什么是RocketMQ
RocketMQ作为一款纯java、分布式、队列模型的开源消息中间件,支持事务消息、顺序消息、批量消息、定时消息、消息回溯等。主要功能是异步解耦和流量削峰。
常见的MQ主要有:ActiveMQ、RabbitMQ、Kafka、RocketMQ
四种MQ的对比
特性 | ActiveMQ | RabbitMQ | RocketMQ | Kafka |
---|---|---|---|---|
单机吞吐量 | 万级,比RocketMQ和Kafka第一个级别 | 同ActiveMQ | 10万级,支撑高吞吐 | 10万级,高吞吐,一般配合大数据类的系统进行实时数据计算、日志采集等场景 |
topic数量对吞吐量的影响 | topic可以达到几百/几千级别,吞吐量会有较小幅度的下降,这是RocketMQ的一大优势,在同等机器下,可以支撑大量的topic | topic从几十到几百时,吞吐量会大幅度下降,在同等机器下,kafka尽量保证topic数量不要过多,如果要支撑大规模的topic,需要增加更多的机器资源 | ||
时效性 | ms级 | 微秒级别,RabbitMQ的特性,延迟最低 | ms级别 | 延迟在ms级别以内 |
可用性 | 高,基于主从架构实现高可用 | 同ActiveMQ | 非常高,分布式架构 | 非常高,分布式一个数据多个副本,少数机器宕机,不会丢失数据,不会导致不可用 |
消息可靠性 | 有较低的概率丢失数据 | 基本不丢 | 经过参数优化配置,可以做到0丢失 | 经过参数优化配置,可以做到0丢失 |
功能支持 | MQ领域的功能机器完备 | 基于erlang开发,并发能力很强,性能极好,延时很低 | MQ功能较为完善,基本分布式,扩展性好 | 功能较简单,主要支持简单的MQ功能,在大数据领域的实时计算以及日志采集被大规模使用 |
其他 | Apache开发,起步早,没有经过高吞吐场景验证,社区不活跃 | 开源、稳定、社区活跃度高 | 阿里开源,交给Apache,社区活跃度低 | Apache开发,开源、高吞吐量、社区活跃度高 |
消息中间件的使用场景
异步与解耦:
当我们下了一个订单之后,订单系统会进行RPC同步调用 支付系统、库存系统、物流系统等,那么系统之间就会有耦合性,耦合性越高的话,容错性就越低,比如我们的支付系统如果宕机了,就会导致我们整个交易的异常,从而影响用户的体验。
如果我们中间加入了消息中间件,不管是支付还是库存等系统,都是通过异步的方式进行调用的,如果其中一个系统宕机了,不会影响我们用户下单的使用。
本质上MQ第一步完成了 异步 ,第二步完成了 解耦 。那么系统的容错性就越高。
流量削峰:
流量削峰也可以叫削峰填谷,比如一些互联网公司大促场景,双十一、店庆或者秒杀活动,都会使用到消息中间件。
如果在不使用消息中间件或者没有流量削峰,每秒是很高的并发,这个时候如果我们的A系统,如果要将数据写入到我们的MYSQL中,受限于MYSQL本身服务的上限,最大我们只能每秒处理200请求,这个时候会有大量的消息进行堆积,从而导致A系统的奔溃。
这个时候我们可以将用户的请求消息通过MQ进行写入,因为消息中间件本身是对数据量处理比较高的一个系统,所以对于每秒2000请求,消息中间件可以处理,然后A系统作为消息中间件的一个消费者,以固定的速度从MQ中拉取200个消息,完成我们的业务操作,用时间换空间 从而确保我们A系统的稳定性。
数据分发:
如果S系统,在对系统进行开发的时候,需要对接多个(A、B、C、D)系统,使用传统的接口调用,中间有改动就需要修改我们的代码,当新增了A系统,我们需要去修改代码去调用A系统来完成对应的业务逻辑,如果我们当中的D系统需要移除, 同样也需要修改代码删除对应的接口调用。
如果S系统使用了消息中间件,我们S系统只要将消息交给MQ,剩下的不论是新增还是移除,还是原有的,他们都只是消息中间件的一个消费者,这个时候我们就便于数据的分发。
比如我们新增一个系统,我们只需要新增一个MQ的消费者,直接从MQ里面拿消息就可以,当我们需要移除一个系统的时候,只需要取消对MQ消息的监听即可。对于我们原有的S系统不需要进行额外的修改。如果使用MQ作为数据分发,减少数据的修改,提高开发的效率。