协程源码 launch 流程跟踪学习

为了更深入学习协程的底层实现原理,了解协程线程切换的根本本质。也为了以后在工作中可以根据不同的需求场景,更加随心所欲的使用不同的协程。

今天通过 launch 跟踪一下协程的执行流程。

kotlin 复制代码
 fun getData() {
    Trace.beginSection("getData");
    Log.e(TAG, "getData before " + Thread.currentThread().name)
     val demoScope: suspend CoroutineScope.() -> Unit = {
         Trace.beginSection("DispatchersIO");
         Log.e(TAG, "getData IO 1  " + Thread.currentThread().name)
         Thread.sleep(1000)
         Log.e(TAG, "getData IO 2 " + Thread.currentThread().name)
         Trace.endSection();
     }
     viewModelScope.launch(Dispatchers.IO, block = demoScope)
}

1. 流程图

1.1 从 launch 源码开始

kotlin 复制代码
public fun CoroutineScope.launch(
    context: CoroutineContext = EmptyCoroutineContext,
    start: CoroutineStart = CoroutineStart.DEFAULT,
    block: suspend CoroutineScope.() -> Unit
): Job {
    //1,先通过参数Context构造一个新的CoroutineContext
    val newContext = newCoroutineContext(context)
    val coroutine = if (start.isLazy)
        LazyStandaloneCoroutine(newContext, block) else
        StandaloneCoroutine(newContext, active = true)
    coroutine.start(start, coroutine, block)
    return coroutine
}

launch 方法有三个参数

  • context:常用的一般是 Dispatchers.Default,Dispatchers.Main,Dispatchers.Unconfined,Dispatchers.IO
  • start:枚举类型共四种:DEFAULT,LAZY,ATOMIC,UNDISPATCHED
  • block:就是 launch 执行的协程体

1.2 我们来看 newCoroutineContext 方法

kotlin 复制代码
@ExperimentalCoroutinesApi
public actual fun CoroutineScope.newCoroutineContext(context: CoroutineContext): CoroutineContext {
    val combined = coroutineContext + context//1
    val debug = if (DEBUG) combined + CoroutineId(COROUTINE_ID.incrementAndGet()) else combined
    return if (combined !== Dispatchers.Default && combined[ContinuationInterceptor] == null)
        debug + Dispatchers.Default else debug
}

刚开始看到代码 1 的+号,头都是蒙的,这是什么鬼?不是数字类型,为啥能加?

其实本质就是调用了 CoroutineContext 的 plus,是操作符的重载

kotlin 复制代码
/**
 * Returns a context containing elements from this context and elements from  other [context].
 * The elements from this context with the same key as in the other one are dropped.
 */
public operator fun plus(context: CoroutineContext): CoroutineContext =
    if (context === EmptyCoroutineContext) this else // fast path -- avoid lambda creation
        context.fold(this) { acc, element ->
            //operation函数体。。。。。。。
        }

fold 函数比较难理解,我们先说结论,就是把参数 this 内部与 context 的 key 一样的 CoroutineContext 移除后,剩下的 CoroutineContext 与 context 组成新的 CoroutineContext 对象。下边慢慢分析

CoroutineContext 的子类重写 fold 函数的一共有三个 EmptyCoroutineContext,CombinedContext,Element

  • 上述代码第 6 行已经判断过 context 是 EmptyCoroutineContext。所以当前的 context 不可能是 EmptyCoroutineContext。其 fold 方法直接返回 this。如下:
kotlin 复制代码
public override fun <R> fold(initial: R, operation: (R, Element) -> R): R = initial
  • 是 Element 时。acc 就是 fold 函数参数。element 就是 fold 函数调用者
kotlin 复制代码
public override fun <R> fold(initial: R, operation: (R, Element) -> R): R =
    operation(initial, this)
  • 是 CombinedContext 比较复杂
kotlin 复制代码
internal class CombinedContext(
    private val left: CoroutineContext,
    private val element: Element
) : CoroutineContext, Serializable {
    public override fun <R> fold(initial: R, operation: (R, Element) -> R): R =
        operation(left.fold(initial, operation), element)
}

要递归调用 fold 函数,并重复调用 operation 函数。直到最后调用 Element,或者 EmptyCoroutineContext 的 fold 函数。

最终需要分析的都是 Element 的 fold 函数执行情况

scss 复制代码
context.fold(this) { acc, element ->//acc就是fold函数参数。element就是fold函数调用者,当前就是Dispatchers.IO
    //如果acc的key和element的key是相同,就返回新的EmptyCoroutineContext
    //否则就返回acc
    val removed = acc.minusKey(element.key) 
    if (removed === EmptyCoroutineContext) element else {
       // make sure interceptor is always last in the context (and thus is fast to get when present)
       //此时removed为acc的left,也就是SupervisorJob
       //获得removed里key为ContinuationInterceptor.key的分发器。当前为null
       val interceptor = removed[ContinuationInterceptor]
       //合并removed和element。也就是SupervisorJob+Dispatchers.IO
       if (interceptor == null) CombinedContext(removed, element) else {
           val left = removed.minusKey(ContinuationInterceptor)
           if (left === EmptyCoroutineContext) CombinedContext(element, interceptor) else
               CombinedContext(CombinedContext(left, element), interceptor)
       }
    }
}

小结下:

newCoroutineContext 其实就是给自己传递的 context 添加一些附加技能。但是 key 相同的技能只包含一个

比如 ViewModel 中 viewModelScope 的 coroutineContext 的默认值 SupervisorJob() + Dispatchers.Main.immediate。默认主线程执行,并保证如果其中的某个子协程出现异常,不会影响子协程

比如切换 dispatcher,当前父协程 dispatcher 为 Dispatchers.Main.immediate,切换为 Dispatchers.IO

1.3 下面分析 StandaloneCoroutine 的 start 方法

kotlin 复制代码
public fun <R> start(start: CoroutineStart, receiver: R, block: suspend R.() -> T) {
    initParentJob()
    start(block, receiver, this)
}
kotlin 复制代码
internal fun initParentJob() {
    //当前的parentContext[job]就是SupervisorJob
    initParentJobInternal(parentContext[Job])
}
kotlin 复制代码
/**
 * Initializes parent job.
 * It shall be invoked at most once after construction after all other initialization.
 */
internal fun initParentJobInternal(parent: Job?) {
    assert { parentHandle == null }
    if (parent == null) {
        parentHandle = NonDisposableHandle
        return
    }
    //start保证parent状态为isActive
    parent.start() // make sure the parent is 
    //...
}

CoroutineStart 的 start 就是如下的 invoke 函数

kotlin 复制代码
public operator fun <R, T> invoke(block: suspend R.() -> T, receiver: R, completion: Continuation<T>): Unit =
    when (this) {
        DEFAULT -> block.startCoroutineCancellable(receiver, completion)
        ATOMIC -> block.startCoroutine(receiver, completion)
        UNDISPATCHED -> block.startCoroutineUndispatched(receiver, completion)
        LAZY -> Unit // will start lazily
    }

通过这里可以大概猜测一下几种 start 的区别。当前我们只看 DEFAULT

kotlin 复制代码
internal fun <R, T> (suspend (R) -> T).startCoroutineCancellable(
    receiver: R, completion: Continuation<T>,
    onCancellation: ((cause: Throwable) -> Unit)? = null
) =
    //runSafely就是添加了一个try catch
    runSafely(completion) {
        createCoroutineUnintercepted(receiver, completion).intercepted().resumeCancellableWith(Result.success(Unit), onCancellation)
    }

createCoroutineUnintercepted 在文件 kotlin.coroutines.intrinsics.intrinsicsJvm.kt

kotlin 复制代码
public actual fun <R, T> (suspend R.() -> T).createCoroutineUnintercepted(
    receiver: R,
    completion: Continuation<T>
): Continuation<Unit> {
    val probeCompletion = probeCoroutineCreated(completion)
    //当前对象是BaseContinuationImpl的子类
    return if (this is BaseContinuationImpl)
        //这个方法在哪?
        create(receiver, probeCompletion)
    else {
        createCoroutineFromSuspendFunction(probeCompletion) {
            (this as Function2<R, Continuation<T>, Any?>).invoke(receiver, it)
        }
    }
}

create 方法在哪?需要反编译代码才能看的到

swift 复制代码
public final class MainViewModel extends ViewModel {
  public static final Companion Companion = new Companion(null);
  
  private static final String TAG = "MainViewModel";
  
  public final void getData() {
    Trace.beginSection("getData");
    StringBuilder stringBuilder = new StringBuilder();
    stringBuilder.append("getData before ");
    stringBuilder.append(Thread.currentThread().getName());
    Log.e("MainViewModel", stringBuilder.toString());
    MainViewModel$getData$eeeee$1 mainViewModel$getData$eeeee$1 = new MainViewModel$getData$eeeee$1(null);
    BuildersKt.launch$default(ViewModelKt.getViewModelScope(this), (CoroutineContext)Dispatchers.getIO(), null, mainViewModel$getData$eeeee$1, 2, null);
  }
  
  @Metadata(d1 = {"\000\022\n\002\030\002\n\002\020\000\n\002\b\002\n\002\020\016\n\000\b†\003\030\0002\0020\001B\007\b\002¢\006\002\020\002R\016\020\003\032\0020\004X‚T¢\006\002\n\000¨\006\005"}, d2 = {"Lcom/haier/uhome/coroutine/ui/main/MainViewModel$Companion;", "", "()V", "TAG", "", "coroutine_debug"}, k = 1, mv = {1, 6, 0}, xi = 48)
  public static final class Companion {
    private Companion() {}
  }
  
  @Metadata(d1 = {"\000\n\n\000\n\002\020\002\n\002\030\002\020\000\032\0020\001*\0020\002HŠ@"}, d2 = {"<anonymous>", "", "Lkotlinx/coroutines/CoroutineScope;"}, k = 3, mv = {1, 6, 0}, xi = 48)
  @DebugMetadata(c = "com.haier.uhome.coroutine.ui.main.MainViewModel$getData$eeeee$1", f = "MainViewModel.kt", i = {}, l = {}, m = "invokeSuspend", n = {}, s = {})
  static final class MainViewModel$getData$eeeee$1 extends SuspendLambda implements Function2<CoroutineScope, Continuation<? super Unit>, Object> {
    int label;
    
    MainViewModel$getData$eeeee$1(Continuation<? super MainViewModel$getData$eeeee$1> param1Continuation) {
      super(2, param1Continuation);
    }
    
    public final Continuation<Unit> create(Object param1Object, Continuation<?> param1Continuation) {
      return (Continuation<Unit>)new MainViewModel$getData$eeeee$1((Continuation)param1Continuation);
    }
    //。。。。。。。
  }
}

可以看到我们的协程体其实是一个基础 SuspendLambda 的 class 对象。当调用 create 时,用参数 probeCompletion 又构造了一个新的协程体对象

SuspendLambda 的继承关系如下:

SuspendLambda-->ContinuationImpl-->BaseContinuationImpl-->Continuation<Any?>, CoroutineStackFrame, Serializable

所以 intercepted()方法就是调用 ContinuationImpl 内部实现的

kotlin 复制代码
public fun intercepted(): Continuation<Any?> =
    intercepted
        ?: (context[ContinuationInterceptor]?.interceptContinuation(this) ?: this)
            .also { intercepted = it }

context[ContinuationInterceptor]此时获得的就是 Dispatchers.IO

其 interceptContinuation 方法如下

kotlin 复制代码
public final override fun <T> interceptContinuation(continuation: Continuation<T>): Continuation<T> =
    DispatchedContinuation(this, continuation)

把 continuation 封装成了 DispatchedContinuation。其继承关系如下:

DispatchedContinuation-->DispatchedTask-->SchedulerTask-->Task-->Runnable

需要注意的是 continuation 就是协程体。就是我们要执行的内容

1.4 继续看 resumeCancellableWith 方法

在文件 kotlinx.coroutines.internal.DispatchedContinuation.kt

kotlin 复制代码
@Suppress("NOTHING_TO_INLINE")
inline fun resumeCancellableWith(
    result: Result<T>,
    noinline onCancellation: ((cause: Throwable) -> Unit)?
) {
    val state = result.toState(onCancellation)
    //dispatcher就是协程代码传入的分发器,
    //判断是否需要切换通过dispatcher执行,当前dispatcher.io,isDispatchNeeded是直接返回true
    if (dispatcher.isDispatchNeeded(context)) {//代码1
        _state = state
        resumeMode = MODE_CANCELLABLE
        dispatcher.dispatch(context, this)
    } else {
        executeUnconfined(state, MODE_CANCELLABLE) {
            if (!resumeCancelled(state)) {
                resumeUndispatchedWith(result)
            }
        }
    }
}

dispatcher.dispatch()方法就把上边生成的 runnable 放到了线程池队列中

文件 kotlinx.coroutines.scheduling.Dispatcher.kt#LimitingDispatcher

kotlin 复制代码
override fun dispatch(context: CoroutineContext, block: Runnable) = dispatch(block, false)

private fun dispatch(block: Runnable, tailDispatch: Boolean) {
    var taskToSchedule = block
    while (true) {
        // Commit in-flight tasks slot
        val inFlight = inFlightTasks.incrementAndGet()

        // Fast path, if parallelism limit is not reached, dispatch task and return
        if (inFlight <= parallelism) {
            dispatcher.dispatchWithContext(taskToSchedule, this, tailDispatch)
            return
        }
        //....
     }
 }

2. dispatche 具体是什么呢?

流程图如下

2.1 其实是在 Dispatchers.IO 实例化时的参数,DefaultScheduler 对象

css 复制代码
internal object DefaultScheduler : ExperimentalCoroutineDispatcher() {
    val IO: CoroutineDispatcher = LimitingDispatcher(
        //这里实例化调度器对象
        this,
        systemProp(IO_PARALLELISM_PROPERTY_NAME, 64.coerceAtLeast(AVAILABLE_PROCESSORS)),
        "Dispatchers.IO",
        TASK_PROBABLY_BLOCKING
    )
    //....
    }

而 DefaultScheduler 内部实例化了一个线程池

2.2 在文件 kotlinx.coroutines.scheduling.Dispatcher.kt

kotlin 复制代码
//kotlinx.coroutines.scheduling.Dispatcher.kt#ExperimentalCoroutineDispatcher
override val executor: Executor
    get() = coroutineScheduler
private var coroutineScheduler = createScheduler()
private fun createScheduler() = CoroutineScheduler(corePoolSize, maxPoolSize, idleWorkerKeepAliveNs, schedulerName)

dispatcher.dispatchWithContext,就是调用线程池的 dispatch,把任务放到 globalQueue 队列里,我们看一下

在文件 kotlinx.coroutines.scheduling.CoroutineScheduler.kt

kotlin 复制代码
internal fun dispatchWithContext(block: Runnable, context: TaskContext, tailDispatch: Boolean) {
    try {
         //coroutineScheduler就是线程池
        coroutineScheduler.dispatch(block, context, tailDispatch)
    } catch (e: RejectedExecutionException) {
        // CoroutineScheduler only rejects execution when it is being closed and this behavior is reserved
        // for testing purposes, so we don't have to worry about cancelling the affected Job here.
        // TaskContext shouldn't be lost here to properly invoke before/after task
        DefaultExecutor.enqueue(coroutineScheduler.createTask(block, context))
    }
}

fun dispatch(block: Runnable, taskContext: TaskContext = NonBlockingContext, tailDispatch: Boolean = false) {
    trackTask() // this is needed for virtual time support
    //当前block就继承之Task
    val task = createTask(block, taskContext)
    // try to submit the task to the local queue and act depending on the result
    //当前线程池不是work,所以此时currentWorker返回为null
    val currentWorker = currentWorker()
    //local放置失败
    val notAdded = currentWorker.submitToLocalQueue(task, tailDispatch)
    if (notAdded != null) {
        //放到global队列里
        if (!addToGlobalQueue(notAdded)) {
            // Global queue is closed in the last step of close/shutdown -- no more tasks should be accepted
            throw RejectedExecutionException("$schedulerName was terminated")
        }
    }
}

3. 任务具体如何执行?

时序图 如下:

3.1 我们来看 kotlinx.coroutines.scheduling.CoroutineScheduler 文件

kotlin 复制代码
private fun runWorker() {
    var rescanned = false
    while (!isTerminated && state != WorkerState.TERMINATED) {
        //通过上一步可以知道任务没有放置到local队列,mayHaveLocalTasks为false
        val task = findTask(mayHaveLocalTasks)
        // Task found. Execute and repeat
        if (task != null) {
            rescanned = false
            minDelayUntilStealableTaskNs = 0L
            executeTask(task)
            continue
        } else {
            mayHaveLocalTasks = false
        }
        //。。。。。。
}
private fun findAnyTask(scanLocalQueue: Boolean): Task? {
    /*
     * Anti-starvation mechanism: probabilistically poll either local
     * or global queue to ensure progress for both external and internal tasks.
     */
    if (scanLocalQueue) {
        val globalFirst = nextInt(2 * corePoolSize) == 0
        if (globalFirst) pollGlobalQueues()?.let { return it }
        localQueue.poll()?.let { return it }
        if (!globalFirst) pollGlobalQueues()?.let { return it }
    } else {
        //从glocal中取出任务
        pollGlobalQueues()?.let { return it }
    }
    return trySteal(blockingOnly = false)
}

private fun pollGlobalQueues(): Task? {
    if (nextInt(2) == 0) {
        globalCpuQueue.removeFirstOrNull()?.let { return it }
        return globalBlockingQueue.removeFirstOrNull()
    } else {
        globalBlockingQueue.removeFirstOrNull()?.let { return it }
        return globalCpuQueue.removeFirstOrNull()
    }
}

//参数task就是一个runnable
private fun executeTask(task: Task) {
    val taskMode = task.mode
    idleReset(taskMode)
    beforeTask(taskMode)
    //执行task里的run方法
    runSafely(task)
    afterTask(taskMode)
}

3.2 Task 的 run 方法的实现在 kotlinx.coroutines.DispatchedTask 里

kotlin 复制代码
public final override fun run() {
// should have been set before dispatching
    val taskContext = this.taskContext
    var fatalException: Throwable? = null
    try {
        //...
        withCoroutineContext(context, delegate.countOrElement) {
            //。。。。
            continuation.resume(getSuccessfulResult(state))
            //。。。。。
        }
    } catch (e: Throwable) {
        // This instead of runCatching to have nicer stacktrace and debug experience
        fatalException = e
    } finally {
        val result = runCatching { taskContext.afterTask() }
        handleFatalException(fatalException, result.exceptionOrNull())
    }
}

3.3 continuation.resume 在 kotlin.coroutines.Continuation.kt 文件

kotlin 复制代码
public inline fun <T> Continuation<T>.resume(value: T): Unit =
    resumeWith(Result.success(value))

3.4 最终执行内容在文件:kotlin.coroutines.jvm.internal.ContinuationImpl 里

kotlin 复制代码
public final override fun resumeWith(result: Result<Any?>) {
    // This loop unrolls recursion in current.resumeWith(param) to make saner and shorter stack traces on resume
    var current = this
    var param = result
    while (true) {
        // Invoke "resume" debug probe on every resumed continuation, so that a debugging library infrastructure
        // can precisely track what part of suspended callstack was already resumed
        probeCoroutineResumed(current)
        with(current) {
            val completion = completion!! // fail fast when trying to resume continuation without completion
            val outcome: Result<Any?> =
                try {
                    //执行协程体内容
                    val outcome = invokeSuspend(param)
                    if (outcome === COROUTINE_SUSPENDED) return
                    Result.success(outcome)
                } catch (exception: Throwable) {
                    Result.failure(exception)
                }
            releaseIntercepted() // this state machine instance is terminating
            if (completion is BaseContinuationImpl) {
                // unrolling recursion via loop
                current = completion
                param = outcome
            } else {
                // top-level completion reached -- invoke and return
                completion.resumeWith(outcome)
                return
            }
        }
    }
}

3.5 invokeSuspend 在哪呢?还是找不到!同样需要反编译查看。就是

swift 复制代码
public final class MainViewModel extends ViewModel {
  public static final Companion Companion = new Companion(null);
  
  private static final String TAG = "MainViewModel";
  
  public final void getData() {
    Trace.beginSection("getData");
    StringBuilder stringBuilder = new StringBuilder();
    stringBuilder.append("getData before ");
    stringBuilder.append(Thread.currentThread().getName());
    Log.e("MainViewModel", stringBuilder.toString());
    MainViewModel$getData$eeeee$1 mainViewModel$getData$eeeee$1 = new MainViewModel$getData$eeeee$1(null);
    BuildersKt.launch$default(ViewModelKt.getViewModelScope(this), (CoroutineContext)Dispatchers.getIO(), null, mainViewModel$getData$eeeee$1, 2, null);
  }
  
  @Metadata(d1 = {"\000\n\n\000\n\002\020\002\n\002\030\002\020\000\032\0020\001*\0020\002HŠ@"}, d2 = {"<anonymous>", "", "Lkotlinx/coroutines/CoroutineScope;"}, k = 3, mv = {1, 6, 0}, xi = 48)
  @DebugMetadata(c = "com.haier.uhome.coroutine.ui.main.MainViewModel$getData$eeeee$1", f = "MainViewModel.kt", i = {}, l = {}, m = "invokeSuspend", n = {}, s = {})
  static final class MainViewModel$getData$eeeee$1 extends SuspendLambda implements Function2<CoroutineScope, Continuation<? super Unit>, Object> {
    int label;
    
    public final Object invokeSuspend(Object param1Object) {
      IntrinsicsKt.getCOROUTINE_SUSPENDED();
      if (this.label == 0) {
        ResultKt.throwOnFailure(param1Object);
        Trace.beginSection("DispatchersIO");
        param1Object = new StringBuilder();
        param1Object.append("getData IO 1  ");
        param1Object.append(Thread.currentThread().getName());
        Log.e("MainViewModel", param1Object.toString());
        Thread.sleep(1000L);
        param1Object = new StringBuilder();
        param1Object.append("getData IO 2 ");
        param1Object.append(Thread.currentThread().getName());
        Log.e("MainViewModel", param1Object.toString());
        Trace.endSection();
        return Unit.INSTANCE;
      } 
      throw new IllegalStateException("call to 'resume' before 'invoke' with coroutine");
    }
  }
}

到此处协程 launch 内容就执行完了。

4. 总结

其底层使用的就是对线程池的封装,把协程体封装到 runnable 里,放到线程池执行。使用了的线程池线程复用,不必频繁的创建,销毁线程等优点。提升了性能

其他的 Dispatcher,我就不一一跟踪了,有兴趣的同学可以自己跟踪一下。这里简单介绍下我的理解:

Dispatchers.Main:其内部使用的 MainCoroutineDispatcher,把任务放到主线程的 handler 顺序执行

Dispatchers.Default:是一个使用 DefaultScheduler 的线程池,据说比较适合做逻辑性任务(这个我看不出来😋)

Dispatchers.Unconfined:跟随父协程的 context,直接执行,不做线程切换

launch 主要逻辑不是很复杂,主要就是线程池的调度。难以跟踪的原因大概是因为源码中到处在使用函数扩展。再加上协程体的具体实现是 kotlin 编译过程中生成的。所以花的时间比较多,需要有耐心!

5. 团队介绍

「三翼鸟数字化技术平台-场景设计交互平台」 主要负责设计工具的研发,包括营销设计工具、家电VR设计和展示、水电暖通前置设计能力,研发并沉淀素材库,构建家居家装素材库,集成户型库、全品类产品库、设计方案库、生产工艺模型,打造基于户型和风格的AI设计能力,快速生成算量和报价;同时研发了门店设计师中心和项目中心,包括设计师管理能力和项目经理管理能力。实现了场景全生命周期管理,同时为水,空气,厨房等产业提供商机管理工具,从而实现了以场景贯穿的B端C端全流程系统。

相关推荐
人间有清欢16 小时前
十、kotlin的协程
kotlin
吾爱星辰16 小时前
Kotlin 处理字符串和正则表达式(二十一)
java·开发语言·jvm·正则表达式·kotlin
ChinaDragonDreamer16 小时前
Kotlin:2.0.20 的新特性
android·开发语言·kotlin
一丝晨光1 天前
Java、PHP、ASP、JSP、Kotlin、.NET、Go
java·kotlin·go·php·.net·jsp·asp
500了1 天前
Kotlin基本知识
android·开发语言·kotlin
陈亦康2 天前
Armeria gPRC 高级特性 - 装饰器、无框架请求、阻塞处理器、Nacos集成、负载均衡、rpc异常处理、文档服务......
kotlin·grpc·armeria
奋斗的小鹰3 天前
kotlin 委托
android·开发语言·kotlin
Wency(王斯-CUEB)3 天前
【文献阅读】政府数字治理的改善是否促进了自然资源管理?基于智慧城市试点的准自然实验
android·kotlin·智慧城市
中游鱼3 天前
Visual Studio C# 编写加密火星坐标转换
kotlin·c#·visual studio
500了3 天前
kotlin协程
开发语言·python·kotlin