四、分类算法 - 模型选择与调优

目录

1、模型选择与调优

[1.1 交叉验证](#1.1 交叉验证)

[1.2 超参数搜索 - 网格搜索](#1.2 超参数搜索 - 网格搜索)

[1.3 模型选择与调优 API](#1.3 模型选择与调优 API)

[1.4 鸢尾花案例增加K值调优](#1.4 鸢尾花案例增加K值调优)


  1. sklearn转换器和估算器
  2. KNN算法
  3. 模型选择和调优
  4. 朴素贝叶斯算法
  5. 决策树
  6. 随机森林

1、模型选择与调优

1.1 交叉验证

1.2 超参数搜索 - 网格搜索

1.3 模型选择与调优 API

1.4 鸢尾花案例增加K值调优

python 复制代码
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler

def knn_iris():
    # 用KNN 算法对鸢尾花进行分类
    # 1、获取数据
    iris = load_iris()
    # 2、划分数据集
    x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=6)
    # 3、特征工程 - 标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)
    # 4、KNN 算法预估器
    estimator = KNeighborsClassifier(n_neighbors=3)
    estimator.fit(x_train,y_train)
    # 5、模型评估
    # 方法1 :直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n",y_predict)
    print("直接比对真实值和预测值:\n",y_test == y_predict)
    # 方法2:计算准确率
    score = estimator.score(x_test,y_test)
    print("准确率为:\n",score)
    return None

def knn_iris_gscv():
    # 用KNN 算法对鸢尾花进行分类,添加网格搜索和交叉验证
    # 1、获取数据
    iris = load_iris()

    # 2、划分数据集
    x_train,x_test,y_train,y_test = train_test_split(iris.data,iris.target,random_state=6)

    # 3、特征工程 - 标准化
    transfer = StandardScaler()
    x_train = transfer.fit_transform(x_train)
    x_test = transfer.transform(x_test)

    # 4、KNN 算法预估器
    estimator = KNeighborsClassifier()
    # 加入网格搜索和交叉验证
    # 参数准备
    param_dict = {"n_neighbors":[1,3,5,7,9,11]}
    estimator = GridSearchCV(estimator,param_grid=param_dict,cv=10)
    estimator.fit(x_train,y_train)

    # 5、模型评估
    # 方法1 :直接比对真实值和预测值
    y_predict = estimator.predict(x_test)
    print("y_predict:\n",y_predict)
    print("直接比对真实值和预测值:\n",y_test == y_predict)
    # 方法2:计算准确率
    score = estimator.score(x_test,y_test)
    print("准确率为:\n",score)

    # 最佳参数:best_params_
    print("最佳参数:\n",estimator.best_params_)
    # 最佳结果:best_score_
    print("最佳结果:\n",estimator.best_score_)
    # 最佳估计值:best_estimator_
    print("最佳估计值:\n",estimator.best_estimator_)
    # 交叉验证结果:cv_results_
    print("交叉验证结果:\n",estimator.cv_results_)

    return None

if __name__ == "__main__":
    # 代码1 :用KNN算法对鸢尾花进行分类
    knn_iris()
    # 代码2 :用KNN算法对鸢尾花进行分类,添加网格搜索和交叉验证
    knn_iris_gscv()
相关推荐
量子-Alex16 小时前
【大模型技术报告】Qwen2-VL大模型训练过程理解
人工智能
java1234_小锋16 小时前
【AI大模型舆情分析】微博舆情分析可视化系统(pytorch2+基于BERT大模型训练微调+flask+pandas+echarts) 实战(上)
人工智能·flask·大模型·bert
新缸中之脑16 小时前
Imagerouter.io: 免费图像生成API
人工智能
MM_MS16 小时前
Halcon图像点运算、获取直方图、直方图均衡化
图像处理·人工智能·算法·目标检测·计算机视觉·c#·视觉检测
阿杰学AI16 小时前
AI核心知识77——大语言模型之Joint Training(简洁且通俗易懂版)
人工智能·深度学习·ai·语言模型·rag·联合训练·joint training
DFT计算杂谈16 小时前
VASP+PHONOPY+pypolymlpj计算不同温度下声子谱,附批处理脚本
java·前端·数据库·人工智能·python
星爷AG I16 小时前
9-23 动作意图理解(AGI基础理论)
人工智能·agi
九尾狐ai16 小时前
从九尾狐AI实战案例解析AI短视频获客的系统架构与实现方案
人工智能
格林威16 小时前
Baumer相机金属弹簧圈数自动计数:用于来料快速检验的 6 个核心算法,附 OpenCV+Halcon 实战代码!
人工智能·数码相机·opencv·算法·计算机视觉·视觉检测·堡盟相机
万行16 小时前
SQL进阶&索引篇
开发语言·数据库·人工智能·sql