SCI一区 | Matlab实现GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测
目录
效果一览
基本介绍
1.【SCI一区级】Matlab实现GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测
2.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,迭代图,混淆矩阵图.
3...data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行。
4.输出指标包括优化参数、精确度、召回率、精确率、F1分数。
数据集格式:
格拉姆角场(Gram Angle Field)和双通道PCNN(Pulse Coupled Neural Network)融合注意力机制是一种用于多特征分类预测的模型。下面我将逐步解释这个模型的各个组成部分:
格拉姆角场:格拉姆角场是一种用于描述特征之间关系的表示方法。在该模型中,特征被转化为格拉姆矩阵,然后通过计算格拉姆矩阵之间的角度,得到格拉姆角场。格拉姆角场可以捕捉特征之间的相关性和相互作用,用于提取更丰富的特征表示。
双通道PCNN:PCNN是一种神经网络模型,模拟了生物神经元之间的脉冲耦合行为。在该模型中,使用两个通道处理输入数据。一个通道用于提取空间特征,另一个通道用于提取时间特征。通过融合这两个通道的特征表示,可以更好地捕捉数据的时空信息。
注意力机制:注意力机制在多特征分类预测中起到关键作用。它可以学习数据中不同特征的重要性权重,以便更有效地融合多个特征表示。注意力机制可以使模型自动关注对分类任务更有贡献的特征,并降低对无关或冗余特征的依赖。
多特征分类预测:在得到融合后的特征表示之后,通常会使用分类器(如全连接层)进行最终的分类预测。分类器可以将模型的输出映射为表示不同类别概率的向量,从而进行分类预测。
综上所述,格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测模型结合了格拉姆角场、双通道PCNN和注意力机制的概念。通过这种方式,模型可以更好地利用多个特征的信息,并关注对分类任务更具意义的特征。这种模型在多特征分类问题中可能具有较好的性能。
注:程序和数据放在一个文件夹
模型描述
多头注意力机制(Multi-Head Attention)是一种用于处理序列数据的注意力机制的扩展形式。它通过使用多个独立的注意力头来捕捉不同方面的关注点,从而更好地捕捉序列数据中的相关性和重要性。在多变量时间序列预测中,多头注意力机制可以帮助模型对各个变量之间的关系进行建模,并从中提取有用的特征。
程序设计
- 完整程序和数据获取方式私信博主回复Matlab实现GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测。
clike
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行
rng(0) % 使训练集、和测试集的随机划分与适应度函数一致
%% 读取数据
res = xlsread('data.xlsx');
%% 分析数据
num_class = length(unique(res(:, end))); % 类别数(Excel最后一列放类别)
Numfeatures = size(res, 2) - 1; % 特征维度
num_res = size(res, 1); % 样本数(每一行,是一个样本)
num_size = 0.7; % 训练集占数据集的比例
res = res(randperm(num_res), :); % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1; % 标志位为1,打开混淆矩阵(要求2018版本及以上)
%% 设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];
%% 划分数据集
for i = 1 : num_class
mid_res = res((res(:, end) == i), :); % 循环取出不同类别的样本
mid_size = size(mid_res, 1); % 得到不同类别样本个数
mid_tiran = round(num_size * mid_size); % 得到该类别的训练样本个数
P_train = [P_train; mid_res(1: mid_tiran, 1: end - 1)]; % 训练集输入
T_train = [T_train; mid_res(1: mid_tiran, end)]; % 训练集输出
P_test = [P_test; mid_res(mid_tiran + 1: end, 1: end - 1)]; % 测试集输入
T_test = [T_test; mid_res(mid_tiran + 1: end, end)]; % 测试集输出
end
%% 数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229