一区向量加权算法优化INFO-CNN-SVM卷积神经网络结合支持向量机多特征分类预测

一区向量加权算法优化INFO-CNN-SVM卷积神经网络结合支持向量机多特征分类预测

目录

分类效果



基本描述

1.Matlab实现INFO-CNN-SVM向量加权算法优化卷积神经网络结合支持向量机多特征分类预测(完整源码和数据)

2.优化参数为:学习率,批量处理大小,正则化参数。

3.图很多,包括分类效果图,迭代优化图,混淆矩阵图。

4附赠案例数据可直接运行main一键出图,注意程序和数据放在一个文件夹,运行环境为Matlab2020及以上。

5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。可在下载区获取数据和程序内容。

6.data为数据集,输入12个特征,分四类,采用CNN提取特征,LIBSVM进行数据分类。

注:程序和数据放在一个文件夹。

程序设计

  • 私信博主回复一区向量加权算法优化INFO-CNN-SVM卷积神经网络结合支持向量机多特征分类预测
clike 复制代码
%%  优化算法参数设置
SearchAgents_no = 8;                   % 数量
Max_iteration = 5;                    % 最大迭代次数

%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [
    sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]
    sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [
    convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1],16个特征图
    reluLayer("Name", "relu_1")                                          % Relu 激活层

lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中

tempLayers = [
    sequenceUnfoldingLayer("Name", "sequnfold")                          softmaxLayer("Name", "softmax")                                  % softmax激活层
    classificationLayer("Name", "classification")];                  % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); 
                                                                     % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in");            % 激活层输出 连接 反折叠层输入

%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法
    'MaxEpochs', 500,...                 % 最大训练次数 
    'InitialLearnRate', best_lr,...          % 初始学习率为0.001
    'L2Regularization', best_l2,...         % L2正则化参数
    'LearnRateSchedule', 'piecewise',...  % 学习率下降
    'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1
    'Shuffle', 'every-epoch',...          % 每次训练打乱数据集
    'ValidationPatience', Inf,...         % 关闭验证
    'Plots', 'training-progress',...      % 画出曲线
    'Verbose', false);

%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

1\] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502 \[2\] https://blog.csdn.net/kjm13182345320/article/details/128690229

相关推荐
得物技术25 分钟前
得物管理类目配置线上化:从业务痛点到技术实现
后端·算法·数据分析
CoovallyAIHub1 小时前
首个大规模、跨模态医学影像编辑数据集,Med-Banana-50K数据集专为医学AI打造(附数据集地址)
深度学习·算法·计算机视觉
熬了夜的程序员1 小时前
【LeetCode】101. 对称二叉树
算法·leetcode·链表·职场和发展·矩阵
却道天凉_好个秋1 小时前
目标检测算法与原理(二):Tensorflow实现迁移学习
算法·目标检测·tensorflow
柳鲲鹏2 小时前
RGB转换为NV12,查表式算法
linux·c语言·算法
橘颂TA2 小时前
【剑斩OFFER】算法的暴力美学——串联所有单词的字串
数据结构·算法·c/c++
Kuo-Teng2 小时前
LeetCode 73: Set Matrix Zeroes
java·算法·leetcode·职场和发展
mit6.8242 小时前
[HDiffPatch] 补丁算法 | `patch_decompress_with_cache` | `getStreamClip` | RLE游程编码
c++·算法
程序猿20232 小时前
Python每日一练---第六天:罗马数字转整数
开发语言·python·算法