PCA-SVM分类预测 | Matlab实现PCA-SVM主成分分析结合支持向量机多特征分类预测

PCA-SVM分类预测 | Matlab实现PCA-SVM主成分分析结合支持向量机多特征分类预测

目录

    • [PCA-SVM分类预测 | Matlab实现PCA-SVM主成分分析结合支持向量机多特征分类预测](#PCA-SVM分类预测 | Matlab实现PCA-SVM主成分分析结合支持向量机多特征分类预测)

预测效果





基本介绍

1.Matlab实现PCA-SVM主成分分析结合支持向量机多特征分类预测,excel数据集,main是程序文件;

2.环境需要在MATLAB2018及以上版本运行;

3.多特征数据经过PCA主成分降维后输入支持向量机中,实现多输入分类预测,可以实现二分类及多分类预测。

注:数据和文件放在一个文件夹

程序设计

  • 完整源码和数据获取方式私信回复PCA-SVM分类预测 | Matlab实现PCA-SVM主成分分析结合支持向量机多特征分类预测
clike 复制代码
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  读取数据
res = xlsread('data.xlsx');

%%  分析数据
num_class = length(unique(res(:, end)));  % 类别数(Excel最后一列放类别)
num_dim = size(res, 2) - 1;               % 特征维度
num_res = size(res, 1);                   % 样本数(每一行,是一个样本)
num_size = 0.7;                           % 训练集占数据集的比例
res = res(randperm(num_res), :);          % 打乱数据集(不打乱数据时,注释该行)
flag_conusion = 1;                        % 标志位为1,打开混淆矩阵(要求2018版本及以上)

%%  设置变量存储数据
P_train = []; P_test = [];
T_train = []; T_test = [];

%%  划分数据集
for i = 1 : num_class
    mid_res = res((res(:, end) == i), :);           % 循环取出不同类别的样本
    mid_size = size(mid_res, 1);                    % 得到不同类别样本个数
    mid_tiran = round(num_size * mid_size);         % 得到该类别的训练样本个数

         
end

%%  数据转置
P_train = P_train'; P_test = P_test';
T_train = T_train'; T_test = T_test';

%%  得到训练集和测试样本个数
M = size(P_train, 2);
N = size(P_test , 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501

[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

相关推荐
paradoxjun5 小时前
落地级分类模型训练框架搭建(1):resnet18/50和mobilenetv2在CIFAR10上测试结果
人工智能·深度学习·算法·计算机视觉·分类
ALISHENGYA1 天前
用Python实现SVM搭建金融反诈模型(含调试运行)
算法·机器学习·支持向量机·svm
诸神缄默不语2 天前
用sklearn运行分类模型,选择AUC最高的模型保存模型权重并绘制AUCROC曲线(以逻辑回归、随机森林、梯度提升、MLP为例)
分类·逻辑回归·sklearn
jieshenai2 天前
企业分类相似度筛选实战:基于规则与向量方法的对比分析
人工智能·自然语言处理·分类
一只码代码的章鱼3 天前
分类问题(二元,多元逻辑回归,费歇尔判别分析)spss实操
大数据·数学建模·分类·数据挖掘·逻辑回归
丶21363 天前
【分类】【损失函数】处理类别不平衡:CEFL 和 CEFL2 损失函数的实现与应用
人工智能·分类·损失函数
机器学习之心3 天前
SCSSA-BiLSTM基于改进麻雀搜索算法优化双向长短期记忆网络多特征分类预测Matlab实现
matlab·分类·数据挖掘
Zda天天爱打卡4 天前
【机器学习实战入门】基于深度学习的乳腺癌分类
大数据·人工智能·深度学习·机器学习·分类·数据挖掘
KeyPan4 天前
【机器学习:三十三(一)、支持向量机】
人工智能·神经网络·算法·机器学习·支持向量机·数据挖掘·迁移学习
yuanbenshidiaos4 天前
【大数据】机器学习------支持向量机(SVM)
大数据·机器学习·支持向量机