多特征分类预测

机器学习之心17 天前
支持向量机·分类·多特征分类预测·pca-svm·主成分分析结合支持向量机
PCA-SVM分类预测 | Matlab实现PCA-SVM主成分分析结合支持向量机多特征分类预测1.Matlab实现PCA-SVM主成分分析结合支持向量机多特征分类预测,excel数据集,main是程序文件; 2.环境需要在MATLAB2018及以上版本运行; 3.多特征数据经过PCA主成分降维后输入支持向量机中,实现多输入分类预测,可以实现二分类及多分类预测。 注:数据和文件放在一个文件夹
机器学习之心21 天前
cnn-attention·多特征分类预测
CNN-Attention分类预测 | Matlab实现多特征分类预测1.Matlab实现CNN-Attention卷积神经网络融合注意力机制多特征分类预测,运行环境Matlab2023b及以上; 2.excel数据,方便替换,输入多个特征,分四类,可在下载区获取数据和程序内容。 3.图很多,包括分类效果图,混淆矩阵图。 4.附赠案例数据可直接运行main一键出图,注意程序和数据放在一个文件夹,运行环境为Matlab2023b及以上。 5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。可在下载区获取数据和程序内容。
机器学习之心4 个月前
多特征分类预测·cpo-rbf·优化宽度·中心值
[独家原创] CPO-RBF多特征分类预测 优化宽度+中心值+连接权值 (多输入单输出)Matlab代码1.[独家原创] CPO-RBF多特征分类预测 优化宽度+中心值+连接权值 (多输入单输出)Matlab代码;
机器学习之心4 个月前
支持向量机·分类·transformer·故障诊断·多特征分类预测·transformer-svm
先用先发!小样本故障诊断新思路!Transformer-SVM组合模型多特征分类预测/故障诊断(Matlab)1.Matlab实现Transformer-SVM多特征分类预测/故障诊断,运行环境Matlab2023b及以上;
机器学习之心4 个月前
算法·分类·多特征分类预测·最小二乘支持向量机·鱼鹰算法优化·ooa-lssvm
分类预测 | Matlab实现OOA-LSSVM鱼鹰算法优化最小二乘支持向量机多特征分类预测/故障诊断分类预测 | Matlab实现OOA-LSSVM鱼鹰算法优化最小二乘支持向量机多特征分类预测/故障诊断;
机器学习之心4 个月前
分类·lstm·transformer·故障诊断·多特征分类预测
Transformer-LSTM分类 | Matlab实现Transformer-LSTM多特征分类预测/故障诊断1.Matlab实现Transformer-LSTM多特征分类预测/故障诊断,运行环境Matlab2023b及以上;
机器学习之心5 个月前
matlab·分类·transformer·故障诊断·多特征分类预测
分类预测 | Matlab实现基于Transformer多特征分类预测/故障诊断1.Matlab实现Transformer多特征分类预测/故障诊断,运行环境Matlab2023b及以上;
机器学习之心6 个月前
时间卷积双向长短期记忆神经网络·多特征分类预测·tcn-bilstm-matt
JCR一区级 | Matlab实现TCN-BiLSTM-MATT时间卷积双向长短期记忆神经网络多特征分类预测1.JMatlab实现TCN-BiLSTM-MATT时间卷积双向长短期记忆神经网络多特征分类预测,TCN-BiLSTM-Multihead-Attention; 多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关
机器学习之心6 个月前
时间卷积长短期记忆神经网络·多特征分类预测·tcn-lstm-matt
JCR一区级 | Matlab实现TCN-LSTM-MATT时间卷积长短期记忆神经网络多特征分类预测1.JCR一区级 | Matlab实现TCN-LSTM-MATT时间卷积长短期记忆神经网络多特征分类预测,TCN-LSTM-Multihead-Attention; 多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中
机器学习之心6 个月前
多特征分类预测·蜣螂算法优化·dbo-cnn-svm·卷积神经网络结合支持向量机
分类预测 | Matlab实现DBO-CNN-SVM蜣螂算法优化卷积神经网络结合支持向量机多特征分类预测1.Matlab实现DBO-CNN-SVM蜣螂算法优化卷积神经网络结合支持向量机多特征分类预测(完整源码和数据) 2.优化参数为:学习率,批量处理大小,正则化参数。 3.图很多,包括分类效果图,混淆矩阵图。 4.附赠案例数据可直接运行main一键出图~ 注意程序和数据放在一个文件夹,运行环境为Matlab2020及以上。 5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 6.输入多个特征,分四类。
机器学习之心7 个月前
迁移学习·多特征分类预测·gasf-cnn·格拉姆角场和·卷积网络多头注意力机制
分类预测 | Matlab实现基于迁移学习和GASF-CNN-Mutilhead-Attention格拉姆角场和卷积网络多头注意力机制多特征分类预测/故障识别1.Matlab实现基于迁移学习和GASF-CNN-Mutilhead-Attention格拉姆角场和卷积网络多头注意力机制多特征分类预测/故障识别; 多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。
机器学习之心8 个月前
tcn-bigru·时间卷积双向门控循环单元·多特征分类预测·多头注意力机制
分类预测 | Matlab实现TCN-BiGRU-Mutilhead-Attention时间卷积双向门控循环单元多头注意力机制多特征分类预测/故障识别1.Matlab实现TCN-BiGRU-Mutilhead-Attention时间卷积双向门控循环单元多头注意力机制多特征分类预测/故障识别,经全连接层、softmax层和分类层后将高维特征映射为最终预测结果。 2.数据输入多个特征,输出8个类别,主程序运行; 3.可视化展示分类准确率; 4.运行环境matlab2023b及以上。
机器学习之心8 个月前
attention·cnn-gru·多特征分类预测·卷积神经网络-门控循环单元·mutilhead·融合多头注意力机制
分类预测 | Matlab实现CNN-GRU-Mutilhead-Attention卷积神经网络-门控循环单元融合多头注意力机制多特征分类预测1.Matlab实现CNN-GRU-Mutilhead-Attention卷积神经网络-门控循环单元融合多头注意力机制多特征分类预测。多头自注意力层 (Multihead-Self-Attention):Multihead-Self-Attention多头注意力机制是一种用于模型关注输入序列中不同位置相关性的机制。它通过计算每个位置与其他位置之间的注意力权重,进而对输入序列进行加权求和。注意力能够帮助模型在处理序列数据时,对不同位置的信息进行适当的加权,从而更好地捕捉序列中的关键信息。 2.数据输入15个
机器学习之心8 个月前
主成分降维·多特征分类预测·gcn·pca-gcn·图卷积神经网络
EI级 | Matlab实现PCA-GCN主成分降维结合图卷积神经网络的数据多特征分类预测1.Matlab实现PCA-GCN主成分降维结合图卷积神经网络的数据多特征分类预测 Matlab2023
机器学习之心9 个月前
多特征分类预测·st-cnn-matt·st-cnn·s变换时频图·卷积网络融合多头自注意力机制
SCI一区 | Matlab实现ST-CNN-MATT基于S变换时频图和卷积网络融合多头自注意力机制的多特征分类预测1.【SCI一区级】Matlab实现ST-CNN-MATT基于S变换时频图和卷积网络(CNN)融合多头自注意力机制的故障多特征分类预测。 2.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,迭代图,混淆矩阵图。 3.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行。 4.输出指标包括优化参数、精确度、召回率、精确率、F1分数。
机器学习之心9 个月前
多特征分类预测·融合注意力机制·gaf-pcnn-msa·格拉姆角场·双通道pcnn
SCI一区 | Matlab实现GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测1.【SCI一区级】Matlab实现GAF-PCNN-MSA格拉姆角场和双通道PCNN融合注意力机制的多特征分类预测 2.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。程序语言为matlab,程序可出分类效果图,迭代图,混淆矩阵图. 3…data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行。 4.输出指标包括优化参数、精确度、召回率、精确率、F1分数。 数据集格式: 格拉姆角场(Gram Angle Field)和双通道PCNN(Pulse C
机器学习之心1 年前
支持向量机·多特征分类预测·dbo-svm·蜣螂算法优化
分类预测 | Matlab实现DBO-SVM蜣螂算法优化支持向量机多特征分类预测1.Matlab实现DBO-SVM蜣螂算法优化支持向量机多特征分类预测(完整源码和数据) 优化支持向量机核函数参数c和g。 2.多特征输入单输出的二分类及多分类模型。运行环境matlab2018。 3.语言为matlab,含分类效果图,迭代优化图,混淆矩阵图。 4.直接替换数据即可使用,保证程序可正常运行。运行环境MATLAB2018及以上。 5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
机器学习之心1 年前
attention·双向长短期记忆神经网络·多特征分类预测·粒子群算法优化·pso-bilstm-att·bilstm-atten
分类预测 | Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多特征分类预测1.Matlab实现PSO-BiLSTM-Attention粒子群算法优化双向长短期记忆神经网络融合注意力机制多特征分类预测,运行环境Matlab2023b及以上; 2.优化参数为:学习率,隐含层节点,正则化参数。 3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用; 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图; 4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行,可在下载区获取数据和程序内容。
机器学习之心1 年前
门控循环单元·多特征分类预测·粒子群算法优化·pso-gru·融合注意力机制·pso-gru-att·gru-attention
分类预测 | Matlab实现PSO-GRU-Attention粒子群算法优化门控循环单元融合注意力机制多特征分类预测1.Matlab实现PSO-GRU-Attention粒子群算法优化门控循环单元融合注意力机制多特征分类预测,运行环境Matlab2023b及以上; 2.优化参数为:学习率,隐含层节点,正则化参数。 3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用; 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图; 4.data为数据集,输入12个特征,分四类;main为主程序,其余为函数文件,无需运行,可在下载区获取数据和程序内容。
机器学习之心1 年前
cnn-bilstm·自注意力机制·多特征分类预测·koa-cnn-bilstm·selfattention
分类预测 | Matlab实现KOA-CNN-BiLSTM-selfAttention多特征分类预测(自注意力机制)1.Matlab实现KOA-CNN-BiLSTM-selfAttention开普勒算法优化卷积双向长短期记忆神经网络融合自注意力多特征分类预测,多特征输入模型,运行环境Matlab2023b及以上; 2.基于开普勒算法(KOA)优化卷积双向长短期记忆神经网络(CNN-BiLSTM)结合自注意力机制(selfAttention)分类预测。2023年新算法KOA,MATLAB程序,多行变量特征输入,优化了学习率、卷积核大小及隐藏层单元数等。 3.多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数