提示工程(Prompt Engineering)、微调(Fine-tuning) 和 嵌入(Embedding)

主要参考资料:

还没搞懂嵌入(Embedding)、微调(Fine-tuning)和提示工程(Prompt Engineering)?: https://blog.csdn.net/DynmicResource/article/details/133638079

B站Up主Nenly同学《60分钟速通LORA训练!》

目录

提示工程(Prompt Engineering)

如果没有良好的提示设计和基础技术,模型很可能产生幻觉或编造答案,其危险在于,模型往往会产生非常有说服力和看似合理的答案,因此必须非常小心地设计安全缓解措施和地面模型的事实答案,所以提示工程应运而生。

微调(Fine-tuning)

微调通过训练比提示(prompt)中更多的示例来改进小样本学习,让您在大量任务中取得更好的结果。对模型进行微调后,您将不再需要在提示(prompt)中提供示例。这样可以节省成本并实现更低延迟的请求。

下面是Nvidia Inception大会上的两张图。微调大致可以分为参数优化微调(Parameter Efficient Fine Tuning)和全量微调(Fine Tuning),典型的就是LoRA方法和SFT。

LoRA微调

模型权重:在深度学习中,模型的权重(Weights)是指神经网络中的参数。这些参数用于调整和学习模型的行为。而参数的存储方式就是矩阵。

LoRA做了两件事:

(1)"冻结"了原来的权重,在旁边另起了一个单独的"微调权重"来进行训练。

(2)"降本增效"。主要参考资料里的微软论文研究发现,微调前2行2列的效果与等于计算全部行列(LoRA有两个转换器,一个是把"满秩"转换为"低秩",方便微调,另一个再将"低秩"转换为"满秩"。矩阵的"秩"是线性代数的一个概念,描述了这个矩阵的信息丰富度和多样性。)

嵌入(Embedding)

相关推荐
0x2114 小时前
[论文精读]StruQ: Defending Against Prompt Injection with Structured Queries
prompt·提示注入攻击
一 铭8 小时前
AI领域新趋势:从提示(Prompt)工程到上下文(Context)工程
人工智能·语言模型·大模型·llm·prompt
悟乙己19 小时前
通过Claude 生成图片的prompt集锦(一)
prompt·claude·李继刚
逻辑021 小时前
Prompt:提示词工程
prompt
AIGC包拥它2 天前
提示技术系列——链式提示
人工智能·python·langchain·prompt
摸鱼仙人~2 天前
Prompt Engineering Guide — 提示工程全方位指南
prompt
非英杰不图2 天前
论文阅读:Align and Prompt (ALPRO 2021.12)
论文阅读·prompt
静心问道2 天前
Prompt Depth Anything:以提示方式驱动的Depth Anything用于实现4K分辨率下的精确米制深度估计
prompt
fightingwy2 天前
01 Prompt Enginering
prompt
cg501715 天前
OpenAI的Prompt工程
人工智能·prompt