提示工程(Prompt Engineering)、微调(Fine-tuning) 和 嵌入(Embedding)

主要参考资料:

还没搞懂嵌入(Embedding)、微调(Fine-tuning)和提示工程(Prompt Engineering)?: https://blog.csdn.net/DynmicResource/article/details/133638079

B站Up主Nenly同学《60分钟速通LORA训练!》

目录

提示工程(Prompt Engineering)

如果没有良好的提示设计和基础技术,模型很可能产生幻觉或编造答案,其危险在于,模型往往会产生非常有说服力和看似合理的答案,因此必须非常小心地设计安全缓解措施和地面模型的事实答案,所以提示工程应运而生。

微调(Fine-tuning)

微调通过训练比提示(prompt)中更多的示例来改进小样本学习,让您在大量任务中取得更好的结果。对模型进行微调后,您将不再需要在提示(prompt)中提供示例。这样可以节省成本并实现更低延迟的请求。

下面是Nvidia Inception大会上的两张图。微调大致可以分为参数优化微调(Parameter Efficient Fine Tuning)和全量微调(Fine Tuning),典型的就是LoRA方法和SFT。

LoRA微调

模型权重:在深度学习中,模型的权重(Weights)是指神经网络中的参数。这些参数用于调整和学习模型的行为。而参数的存储方式就是矩阵。

LoRA做了两件事:

(1)"冻结"了原来的权重,在旁边另起了一个单独的"微调权重"来进行训练。

(2)"降本增效"。主要参考资料里的微软论文研究发现,微调前2行2列的效果与等于计算全部行列(LoRA有两个转换器,一个是把"满秩"转换为"低秩",方便微调,另一个再将"低秩"转换为"满秩"。矩阵的"秩"是线性代数的一个概念,描述了这个矩阵的信息丰富度和多样性。)

嵌入(Embedding)

相关推荐
AIGC大时代2 小时前
对比DeepSeek、ChatGPT和Kimi的学术写作撰写引言能力
数据库·论文阅读·人工智能·chatgpt·数据分析·prompt
子燕若水4 小时前
根据草图或图片生成网页提示词prompt
prompt
AIGC大时代17 小时前
对比DeepSeek、ChatGPT和Kimi的学术写作关键词提取能力
论文阅读·人工智能·chatgpt·数据分析·prompt
卢卡上学2 天前
【AI绘画】MidJourney关键词{Prompt}全面整理
ai作画·prompt·midjourney
AIGC大时代2 天前
学术方向选则与规划DeepSeek、ChatGPT和Kimi对比
论文阅读·人工智能·chatgpt·数据分析·prompt
kakaZhui4 天前
【llm对话系统】LLM 大模型Prompt 怎么写?
人工智能·chatgpt·prompt·aigc·llama
老六哥_AI助理指南4 天前
Prompt提示词完整案例:让chatGPT成为“书单推荐”的高手
人工智能·chatgpt·prompt
正宗咸豆花6 天前
Prompt 编写进阶指南
人工智能·ai·prompt·aigc·个人开发
三月七(爱看动漫的程序员)7 天前
Genetic Prompt Search via Exploiting Language Model Probabilities
大数据·人工智能·算法·语言模型·自然语言处理·prompt
NiNg_1_2347 天前
AI提示词(Prompt)入门详解
人工智能·prompt