MongoDB聚合运算符:$avg

$avg运算符返回给定数值的平均值

$avg可用于以下阶段:

  • $addFields阶段(从MongoDB 3.4开始可用)
  • $bucket阶段
  • $bucketAuto阶段
  • $group阶段
  • 包含$expr表达式的$match阶段
  • $project阶段
  • $replaceRoot阶段(从MongoDB 3.4开始可用)
  • $replaceWith阶段(从MongoDB 4.2开始可用)
  • $set阶段(从MongoDB 4.2开始可用)
  • $setWindowFields阶段(从MongoDB 5.0开始可用)

语法

js 复制代码
{ $avg: <expression> }

js 复制代码
{ $avg: [ <expression1>, <expression2> ... ]  }

使用

非数值或缺失值

$avg会忽略非数值,包括缺失值。如果平均值的所有操作数都是非数值,则

返回空值。

数组操作

$group阶段,如果表达式解析为一个数组,则会被认为是非数值类型。对于其他支持的阶段:

  • 对于以单个表达式的情况,如果表达式解析为数组,则$avg会遍历数组对数字元素进行平均值运算。
  • 对于以表达式列表为操作数,如果其中任何表达式被解析为数组,则$avg会将数组视为非数值。

举例

$group阶段中使用$avg

sales集合有下列的文档:

json 复制代码
{ "_id" : 1, "item" : "abc", "price" : 10, "quantity" : 2, "date" : ISODate("2014-01-01T08:00:00Z") }
{ "_id" : 2, "item" : "jkl", "price" : 20, "quantity" : 1, "date" : ISODate("2014-02-03T09:00:00Z") }
{ "_id" : 3, "item" : "xyz", "price" : 5, "quantity" : 5, "date" : ISODate("2014-02-03T09:05:00Z") }
{ "_id" : 4, "item" : "abc", "price" : 10, "quantity" : 10, "date" : ISODate("2014-02-15T08:00:00Z") }
{ "_id" : 5, "item" : "xyz", "price" : 5, "quantity" : 10, "date" : ISODate("2014-02-15T09:12:00Z") }

下面的聚合按照item字段对文档进行分组,使用$avg计算分组的平均价格和平均文档数量:

js 复制代码
db.sales.aggregate(
   [
     {
       $group:
         {
           _id: "$item",
           avgAmount: { $avg: { $multiply: [ "$price", "$quantity" ] } },
           avgQuantity: { $avg: "$quantity" }
         }
     }
   ]
)

操作返回下面的结果:

json 复制代码
{ "_id" : "xyz", "avgAmount" : 37.5, "avgQuantity" : 7.5 }
{ "_id" : "jkl", "avgAmount" : 20, "avgQuantity" : 1 }
{ "_id" : "abc", "avgAmount" : 60, "avgQuantity" : 6 }

$project阶段中使用$avg

students集合包含下列文档:

json 复制代码
{ "_id": 1, "quizzes": [ 10, 6, 7 ], "labs": [ 5, 8 ], "final": 80, "midterm": 75 }
{ "_id": 2, "quizzes": [ 9, 10 ], "labs": [ 8, 8 ], "final": 95, "midterm": 80 }
{ "_id": 3, "quizzes": [ 4, 5, 5 ], "labs": [ 6, 5 ], "final": 78, "midterm": 70 }

下面的例子在$project阶段中使用$avg计算测验、实验室、其中和期末平均得分:

js 复制代码
db.students.aggregate([
   { $project: { quizAvg: { $avg: "$quizzes"}, labAvg: { $avg: "$labs" }, examAvg: { $avg: [ "$final", "$midterm" ] } } }
])

操作返回下面的结果:

json 复制代码
{ "_id" : 1, "quizAvg" : 7.666666666666667, "labAvg" : 6.5, "examAvg" : 77.5 }
{ "_id" : 2, "quizAvg" : 9.5, "labAvg" : 8, "examAvg" : 87.5 }
{ "_id" : 3, "quizAvg" : 4.666666666666667, "labAvg" : 5.5, "examAvg" : 74 }

$setWindowFields阶段使用$avg

从MongoDB5.0开始支持。

创建cakeSales集合包含了在加利福尼亚和华盛顿的蛋糕销售状态:

js 复制代码
db.cakeSales.insertMany( [
   { _id: 0, type: "chocolate", orderDate: new Date("2020-05-18T14:10:30Z"),
     state: "CA", price: 13, quantity: 120 },
   { _id: 1, type: "chocolate", orderDate: new Date("2021-03-20T11:30:05Z"),
     state: "WA", price: 14, quantity: 140 },
   { _id: 2, type: "vanilla", orderDate: new Date("2021-01-11T06:31:15Z"),
     state: "CA", price: 12, quantity: 145 },
   { _id: 3, type: "vanilla", orderDate: new Date("2020-02-08T13:13:23Z"),
     state: "WA", price: 13, quantity: 104 },
   { _id: 4, type: "strawberry", orderDate: new Date("2019-05-18T16:09:01Z"),
     state: "CA", price: 41, quantity: 162 },
   { _id: 5, type: "strawberry", orderDate: new Date("2019-01-08T06:12:03Z"),
     state: "WA", price: 43, quantity: 134 }
] )

下面的例子在$setWindowFields阶段使用$avg运算符计算各州蛋糕销售数量的平均值:

js 复制代码
db.cakeSales.aggregate( [
   {
      $setWindowFields: {
         partitionBy: "$state",
         sortBy: { orderDate: 1 },
         output: {
            averageQuantityForState: {
               $avg: "$quantity",
               window: {
                  documents: [ "unbounded", "current" ]
               }
            }
         }
      }
   }
] )

在这个例子中:

  • partitionBy: "$state"根据state州对文档进行分区,包括CAWA两个分区
  • sortBy: { orderDate: 1}按照orderDate对分区文档升序排序,最早的orderDate排在最前面
  • output将文档窗口中文档中quantity的移动平均值设置给averageQuantityForState字段。窗口中包含的文档在unbounded下限和current文档之间,$avg返回从开始到当前文档quantity的移动平均值。

在下面的输出结果中,averageQuantityForStateCAWAquantity的移动平均值:

json 复制代码
{ "_id" : 4, "type" : "strawberry", "orderDate" : ISODate("2019-05-18T16:09:01Z"),
  "state" : "CA", "price" : 41, "quantity" : 162, "averageQuantityForState" : 162 }
{ "_id" : 0, "type" : "chocolate", "orderDate" : ISODate("2020-05-18T14:10:30Z"),
  "state" : "CA", "price" : 13, "quantity" : 120, "averageQuantityForState" : 141 }
{ "_id" : 2, "type" : "vanilla", "orderDate" : ISODate("2021-01-11T06:31:15Z"),
  "state" : "CA", "price" : 12, "quantity" : 145, "averageQuantityForState" : 142.33333333333334 }
{ "_id" : 5, "type" : "strawberry", "orderDate" : ISODate("2019-01-08T06:12:03Z"),
  "state" : "WA", "price" : 43, "quantity" : 134, "averageQuantityForState" : 134 }
{ "_id" : 3, "type" : "vanilla", "orderDate" : ISODate("2020-02-08T13:13:23Z"),
  "state" : "WA", "price" : 13, "quantity" : 104, "averageQuantityForState" : 119 }
{ "_id" : 1, "type" : "chocolate", "orderDate" : ISODate("2021-03-20T11:30:05Z"),
  "state" : "WA", "price" : 14, "quantity" : 140, "averageQuantityForState" : 126 }
相关推荐
The_Ticker27 分钟前
CFD平台如何接入实时行情源
java·大数据·数据库·人工智能·算法·区块链·软件工程
Elastic 中国社区官方博客33 分钟前
Elasticsearch 开放推理 API 增加了对 IBM watsonx.ai Slate 嵌入模型的支持
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
企鹅侠客38 分钟前
ETCD调优
数据库·etcd
Json_1817901448044 分钟前
电商拍立淘按图搜索API接口系列,文档说明参考
前端·数据库
煎饼小狗1 小时前
Redis五大基本类型——Zset有序集合命令详解(命令用法详解+思维导图详解)
数据库·redis·缓存
永乐春秋1 小时前
WEB-通用漏洞&SQL注入&CTF&二次&堆叠&DNS带外
数据库·sql
打鱼又晒网2 小时前
【MySQL】数据库精细化讲解:内置函数知识穿透与深度学习解析
数据库·mysql
大白要努力!2 小时前
android 使用SQLiteOpenHelper 如何优化数据库的性能
android·数据库·oracle
tatasix3 小时前
MySQL UPDATE语句执行链路解析
数据库·mysql
南城花随雪。3 小时前
硬盘(HDD)与固态硬盘(SSD)详细解读
数据库