【线性代数基础】

曾梦想执剑走天涯,我是程序猿【AK】

目录

简述概要

关于线性代数的基础知识。

知识图谱

1.基本概念:

  • 向量:向量是一个有方向的量,可以用一组数(称为坐标)来表示。在二维空间中,向量可以用两个坐标表示;在三维空间中,向量可以用三个坐标表示。
  • 矩阵:矩阵是一个由数字组成的矩形阵列。矩阵的每一行和每一列都可以有任意数量的数字,但这些数字的数量在矩阵中是固定的。
  • 线性组合:向量的线性组合是指通过标量乘法和向量加法来组合向量。

2.矩阵运算:

  • 矩阵加法:两个矩阵相加,就是对应位置的元素相加。
  • 矩阵乘法:矩阵乘法是通过将第一个矩阵的每一行与第二个矩阵的每一列相乘,并将结果相加来得到的。
  • 矩阵转置:矩阵的转置是将矩阵的行和列互换。

3.行列式:

  • 定义:行列式是一个可以从方阵中提取出来的标量值。它基于矩阵的行列数据计算得到。
  • 性质:行列式具有一些重要的性质,如行列互换行列式不变、一数乘行列式的一行就相当于这个数乘此行列式等。
  • 意义:行列式的意义是n维平行体在经过该线性变换之后对有向体积造成的影响。

4.线性方程组:

  • 表示:线性方程组可以用矩阵和向量的形式来表示。例如,Ax=b,其中A是系数矩阵,x是未知数向量,b是常数向量。
  • 解的存在性:线性方程组可能有唯一解、无穷多解或无解,这取决于系数矩阵A的行列式是否为零以及A的秩。

5.特征值与特征向量:

  • 定义:对于一个方阵A和一个非零向量v,如果存在一个标量λ,使得Av=λv,那么λ称为A的特征值,v称为A的对应于特征值λ的特征向量。
  • 性质:特征值和特征向量在矩阵对角化、矩阵的幂运算等方面有重要应用。

6.应用:

  • 线性代数在多个领域都有广泛应用,如物理学、工程学、计算机科学、经济学等。例如,在图形学中,线性代数用于计算物体的位置、旋转和缩放;在机器学习中,线性代数用于处理数据矩阵和计算权重等。

---- 永不磨灭的番号:我是AK

相关推荐
静西子1 小时前
LLM大语言模型部署到本地(个人总结)
人工智能·语言模型·自然语言处理
cxr8281 小时前
基于Claude Code的 规范驱动开发(SDD)指南
人工智能·hive·驱动开发·敏捷流程·智能体
Billy_Zuo1 小时前
人工智能机器学习——决策树、异常检测、主成分分析(PCA)
人工智能·决策树·机器学习
小王爱学人工智能2 小时前
OpenCV的图像金字塔
人工智能·opencv·计算机视觉
北京地铁1号线2 小时前
Qwen-VL(阿里通义千问视觉语言模型)模型架构和损失函数介绍
人工智能·语言模型·自然语言处理
阿豪32 小时前
2025 年职场转行突围:除实习外,这些硬核证书让你的简历脱颖而出(纯经验分享)
大数据·人工智能·经验分享·科技·信息可视化·产品经理
阿杜杜不是阿木木2 小时前
开始 ComfyUI 的 AI 绘图之旅-Stable Diffusion图生图之局部重绘(Inpaint)和扩图(Outpaint)(三)
人工智能·ai·ai作画·aigc·图生图
阿杜杜不是阿木木2 小时前
开始 ComfyUI 的 AI 绘图之旅-Stable Diffusion图生图(二)
人工智能·ai·ai作画·aigc·图生图
九章云极AladdinEdu3 小时前
存算一体芯片生态评估:从三星PIM到知存科技WTM2101
人工智能·pytorch·科技·架构·开源·gpu算力