【线性代数基础】

曾梦想执剑走天涯,我是程序猿【AK】

目录

简述概要

关于线性代数的基础知识。

知识图谱

1.基本概念:

  • 向量:向量是一个有方向的量,可以用一组数(称为坐标)来表示。在二维空间中,向量可以用两个坐标表示;在三维空间中,向量可以用三个坐标表示。
  • 矩阵:矩阵是一个由数字组成的矩形阵列。矩阵的每一行和每一列都可以有任意数量的数字,但这些数字的数量在矩阵中是固定的。
  • 线性组合:向量的线性组合是指通过标量乘法和向量加法来组合向量。

2.矩阵运算:

  • 矩阵加法:两个矩阵相加,就是对应位置的元素相加。
  • 矩阵乘法:矩阵乘法是通过将第一个矩阵的每一行与第二个矩阵的每一列相乘,并将结果相加来得到的。
  • 矩阵转置:矩阵的转置是将矩阵的行和列互换。

3.行列式:

  • 定义:行列式是一个可以从方阵中提取出来的标量值。它基于矩阵的行列数据计算得到。
  • 性质:行列式具有一些重要的性质,如行列互换行列式不变、一数乘行列式的一行就相当于这个数乘此行列式等。
  • 意义:行列式的意义是n维平行体在经过该线性变换之后对有向体积造成的影响。

4.线性方程组:

  • 表示:线性方程组可以用矩阵和向量的形式来表示。例如,Ax=b,其中A是系数矩阵,x是未知数向量,b是常数向量。
  • 解的存在性:线性方程组可能有唯一解、无穷多解或无解,这取决于系数矩阵A的行列式是否为零以及A的秩。

5.特征值与特征向量:

  • 定义:对于一个方阵A和一个非零向量v,如果存在一个标量λ,使得Av=λv,那么λ称为A的特征值,v称为A的对应于特征值λ的特征向量。
  • 性质:特征值和特征向量在矩阵对角化、矩阵的幂运算等方面有重要应用。

6.应用:

  • 线性代数在多个领域都有广泛应用,如物理学、工程学、计算机科学、经济学等。例如,在图形学中,线性代数用于计算物体的位置、旋转和缩放;在机器学习中,线性代数用于处理数据矩阵和计算权重等。

---- 永不磨灭的番号:我是AK

相关推荐
过河卒_zh1566766几秒前
网信发布2025年“人工智能+政务”规范应用案例拟入选名单公示
人工智能·大模型·aigc·政务·算法备案
540_5401 分钟前
ADVANCE Day26
人工智能·python·机器学习
IT_陈寒3 分钟前
Redis 性能优化实战:5个被低估的配置项让我节省了40%内存成本
前端·人工智能·后端
乾元5 分钟前
用 AI 做联动:当应用层出现问题,网络如何被“自动拉入决策回路”
运维·开发语言·网络·人工智能·ci/cd·自动化
qq_12498707538 分钟前
基于springboot的智能医院挂号系统(源码+论文+部署+安装)
java·人工智能·spring boot·后端·毕业设计
光羽隹衡11 分钟前
机器学习——决策树之回归树
决策树·机器学习·回归
wenxiaohai12312 分钟前
在anaconda中安装cuda-pytorch
人工智能·pytorch·python·anaconda
IT·陈寒13 分钟前
零配置、开箱即用:seekdb 如何成为 AI 时代的“全能嵌入式数据库”? ——基于 OceanBase seekdb 的实践体验与 AI 开发思考
数据库·人工智能·oceanbase
建投数据16 分钟前
建投数据再度获评国家级“高新技术企业”
大数据·人工智能
中电金信20 分钟前
中电金信助力200+金融机构同步迁移SWIFT ISO20022标准
大数据·人工智能