【线性代数基础】

曾梦想执剑走天涯,我是程序猿【AK】

目录

简述概要

关于线性代数的基础知识。

知识图谱

1.基本概念:

  • 向量:向量是一个有方向的量,可以用一组数(称为坐标)来表示。在二维空间中,向量可以用两个坐标表示;在三维空间中,向量可以用三个坐标表示。
  • 矩阵:矩阵是一个由数字组成的矩形阵列。矩阵的每一行和每一列都可以有任意数量的数字,但这些数字的数量在矩阵中是固定的。
  • 线性组合:向量的线性组合是指通过标量乘法和向量加法来组合向量。

2.矩阵运算:

  • 矩阵加法:两个矩阵相加,就是对应位置的元素相加。
  • 矩阵乘法:矩阵乘法是通过将第一个矩阵的每一行与第二个矩阵的每一列相乘,并将结果相加来得到的。
  • 矩阵转置:矩阵的转置是将矩阵的行和列互换。

3.行列式:

  • 定义:行列式是一个可以从方阵中提取出来的标量值。它基于矩阵的行列数据计算得到。
  • 性质:行列式具有一些重要的性质,如行列互换行列式不变、一数乘行列式的一行就相当于这个数乘此行列式等。
  • 意义:行列式的意义是n维平行体在经过该线性变换之后对有向体积造成的影响。

4.线性方程组:

  • 表示:线性方程组可以用矩阵和向量的形式来表示。例如,Ax=b,其中A是系数矩阵,x是未知数向量,b是常数向量。
  • 解的存在性:线性方程组可能有唯一解、无穷多解或无解,这取决于系数矩阵A的行列式是否为零以及A的秩。

5.特征值与特征向量:

  • 定义:对于一个方阵A和一个非零向量v,如果存在一个标量λ,使得Av=λv,那么λ称为A的特征值,v称为A的对应于特征值λ的特征向量。
  • 性质:特征值和特征向量在矩阵对角化、矩阵的幂运算等方面有重要应用。

6.应用:

  • 线性代数在多个领域都有广泛应用,如物理学、工程学、计算机科学、经济学等。例如,在图形学中,线性代数用于计算物体的位置、旋转和缩放;在机器学习中,线性代数用于处理数据矩阵和计算权重等。

---- 永不磨灭的番号:我是AK

相关推荐
小毅&Nora8 分钟前
【人工智能】人工智能发展历程全景解析:从图灵测试到大模型时代(含CNN、Q-Learning深度实践)
人工智能·cnn·q-learning
人工智能技术咨询.11 分钟前
具身智能-普通LLM智能体与具身智能:从语言理解到自主行动
人工智能·transformer
Mintopia12 分钟前
🧭 Claude Code 用户工作区最佳实践指南
前端·人工智能·claude
zhanglei50003812 分钟前
一、机器学习概述
机器学习
Caven7715 分钟前
【2025版李宏毅机器学习系列课程】CH2 机器学习 Training Guide
人工智能·机器学习
Q264336502318 分钟前
【有源码】spark与hadoop-情感挖掘+画像建模的携程酒店评价数据分析可视化系统-基于机器学习的携程酒店评价情感分析与竞争态势可视化
大数据·hadoop·python·机器学习·数据分析·spark·毕业设计
Mintopia19 分钟前
🌐 多用户并发请求下的 WebAIGC 服务稳定性技术保障
javascript·人工智能·自动化运维
是店小二呀1 小时前
Doubao-Seed-Code 打造一个专属的规划平台
人工智能·aigc·doubao
幂律智能2 小时前
幂律智能入选“AI100应用标杆”,赋能产业发展新范式
人工智能·百度
咚咚王者3 小时前
人工智能之数据分析 numpy:第十章 副本视图
人工智能·数据分析·numpy