【线性代数基础】

曾梦想执剑走天涯,我是程序猿【AK】

目录

简述概要

关于线性代数的基础知识。

知识图谱

1.基本概念:

  • 向量:向量是一个有方向的量,可以用一组数(称为坐标)来表示。在二维空间中,向量可以用两个坐标表示;在三维空间中,向量可以用三个坐标表示。
  • 矩阵:矩阵是一个由数字组成的矩形阵列。矩阵的每一行和每一列都可以有任意数量的数字,但这些数字的数量在矩阵中是固定的。
  • 线性组合:向量的线性组合是指通过标量乘法和向量加法来组合向量。

2.矩阵运算:

  • 矩阵加法:两个矩阵相加,就是对应位置的元素相加。
  • 矩阵乘法:矩阵乘法是通过将第一个矩阵的每一行与第二个矩阵的每一列相乘,并将结果相加来得到的。
  • 矩阵转置:矩阵的转置是将矩阵的行和列互换。

3.行列式:

  • 定义:行列式是一个可以从方阵中提取出来的标量值。它基于矩阵的行列数据计算得到。
  • 性质:行列式具有一些重要的性质,如行列互换行列式不变、一数乘行列式的一行就相当于这个数乘此行列式等。
  • 意义:行列式的意义是n维平行体在经过该线性变换之后对有向体积造成的影响。

4.线性方程组:

  • 表示:线性方程组可以用矩阵和向量的形式来表示。例如,Ax=b,其中A是系数矩阵,x是未知数向量,b是常数向量。
  • 解的存在性:线性方程组可能有唯一解、无穷多解或无解,这取决于系数矩阵A的行列式是否为零以及A的秩。

5.特征值与特征向量:

  • 定义:对于一个方阵A和一个非零向量v,如果存在一个标量λ,使得Av=λv,那么λ称为A的特征值,v称为A的对应于特征值λ的特征向量。
  • 性质:特征值和特征向量在矩阵对角化、矩阵的幂运算等方面有重要应用。

6.应用:

  • 线性代数在多个领域都有广泛应用,如物理学、工程学、计算机科学、经济学等。例如,在图形学中,线性代数用于计算物体的位置、旋转和缩放;在机器学习中,线性代数用于处理数据矩阵和计算权重等。

---- 永不磨灭的番号:我是AK

相关推荐
共绩算力40 分钟前
DeepSeek V3.2 迈向 GPT-5 级别性能的路径:稀疏注意力、大规模强化学习与上下文重用
人工智能·gpt·共绩算力
haiyu_y1 小时前
Day 57 经典时序模型(1)——差分、ACF/PACF 与 AR/MA/ARMA
人工智能·深度学习·ar
duyinbi75171 小时前
【深度学习】使用YOLOv8-MFMMAFPN进行泡沫检测的完整实现
人工智能·深度学习·yolo
AI科技星1 小时前
引力与电磁的动力学耦合:变化磁场产生引力场与电场方程的第一性原理推导、验证与统一性意义
服务器·人工智能·科技·线性代数·算法·机器学习·生活
hkNaruto1 小时前
【AI】AI学习笔记:OpenAI Tools完全指南:从原理到实战入门
人工智能·笔记·学习
狮子座明仔1 小时前
MiMo-V2-Flash 深度解读:小米 309B 开源 MoE 模型如何用 15B 激活参数吊打 671B 巨头?
人工智能·语言模型·自然语言处理
紧固件研究社1 小时前
从标准件到复杂异形件,紧固件设备如何赋能制造升级
人工智能·制造·紧固件
木头左1 小时前
贝叶斯深度学习在指数期权风险价值VaR估计中的实现与应用
人工智能·深度学习
反向跟单策略1 小时前
期货反向跟单—高频换人能够提高跟单效率?
大数据·人工智能·学习·数据分析·区块链
哎吆我呸1 小时前
Android studio 安装Claude Code GUI 插件报错无法找到Node.js解决方案
人工智能