【线性代数基础】

曾梦想执剑走天涯,我是程序猿【AK】

目录

简述概要

关于线性代数的基础知识。

知识图谱

1.基本概念:

  • 向量:向量是一个有方向的量,可以用一组数(称为坐标)来表示。在二维空间中,向量可以用两个坐标表示;在三维空间中,向量可以用三个坐标表示。
  • 矩阵:矩阵是一个由数字组成的矩形阵列。矩阵的每一行和每一列都可以有任意数量的数字,但这些数字的数量在矩阵中是固定的。
  • 线性组合:向量的线性组合是指通过标量乘法和向量加法来组合向量。

2.矩阵运算:

  • 矩阵加法:两个矩阵相加,就是对应位置的元素相加。
  • 矩阵乘法:矩阵乘法是通过将第一个矩阵的每一行与第二个矩阵的每一列相乘,并将结果相加来得到的。
  • 矩阵转置:矩阵的转置是将矩阵的行和列互换。

3.行列式:

  • 定义:行列式是一个可以从方阵中提取出来的标量值。它基于矩阵的行列数据计算得到。
  • 性质:行列式具有一些重要的性质,如行列互换行列式不变、一数乘行列式的一行就相当于这个数乘此行列式等。
  • 意义:行列式的意义是n维平行体在经过该线性变换之后对有向体积造成的影响。

4.线性方程组:

  • 表示:线性方程组可以用矩阵和向量的形式来表示。例如,Ax=b,其中A是系数矩阵,x是未知数向量,b是常数向量。
  • 解的存在性:线性方程组可能有唯一解、无穷多解或无解,这取决于系数矩阵A的行列式是否为零以及A的秩。

5.特征值与特征向量:

  • 定义:对于一个方阵A和一个非零向量v,如果存在一个标量λ,使得Av=λv,那么λ称为A的特征值,v称为A的对应于特征值λ的特征向量。
  • 性质:特征值和特征向量在矩阵对角化、矩阵的幂运算等方面有重要应用。

6.应用:

  • 线性代数在多个领域都有广泛应用,如物理学、工程学、计算机科学、经济学等。例如,在图形学中,线性代数用于计算物体的位置、旋转和缩放;在机器学习中,线性代数用于处理数据矩阵和计算权重等。

---- 永不磨灭的番号:我是AK

相关推荐
司南OpenCompass几秒前
AAAI 2026|SDEval:首个面向多模态模型的安全动态评估框架
人工智能·多模态模型·大模型评测·司南评测·大模型测评·大模型安全评估·动态评估
艾莉丝努力练剑1 分钟前
【Python基础:语法第五课】Python字典高效使用指南:避开KeyError,掌握遍历与增删改查精髓
大数据·运维·人工智能·python·安全·pycharm
向量引擎小橙1 分钟前
GPT-5.2:深度解析AI的“能力跃迁”与未来生态变革
人工智能·gpt
科技快报3 分钟前
读屏、代点、跨应用,新形态AI 手机背后的基础设施是AI芯片
人工智能·智能手机
盛世宏博北京4 分钟前
弹药库房 “感知 - 传输 - 平台 - 应用” 四层架构温湿度监控方案
java·大数据·人工智能·弹药库房温湿度监控
Guheyunyi5 分钟前
古河云科技智慧消防解决方案
大数据·人工智能·科技·安全·信息可视化·架构
●VON5 分钟前
AI依赖对学生学习影响的量化评估研究框架
人工智能·学习
AI视觉网奇6 分钟前
roi生成 二值图
人工智能·opencv·计算机视觉
音视频牛哥7 分钟前
具身智能时代的音视频架构重构:从延迟到多模态的技术挑战
人工智能·计算机视觉·音视频·具身智能·具身智能低延迟方案·智能机器人rtsp rtmp·rtsp、rtmp低延迟播放器
幂律智能7 分钟前
2025法律与人工智能论坛回顾 | 幂律副总裁李融主持圆桌对话
人工智能·搜索引擎·百度