这么多向量数据库,它们之间到底有哪些差异?

上篇说到chroma的近邻搜索算法实现得有问题,不如qdrant的。其实向量数据库之间看似都一样,但细细比较还是有很多不同的。

国外有一系列文章已经讲得很详细了,而且也就是半年前写的,还是具有很强的参考价值,文章如下:

Vector databases (1): What makes each one different?

Vector databases (2): Understanding their internals

Vector databases (3): Not all indexes are created equal

Vector databases (4): Analyzing the trade-offs

里边有很多细节,不想细看的,我这里给几张图给大家快速了解不同向量数据库的差异。

存在时间

**

**

实现语言及是否开源

托管方法

索引方法

向量压缩的概念

向量一般是由浮点数组成,比如float32。一个float32 占4个字节,当向量维度很高且向量很多时,向量存储空间会比较大,查询起来也会比较慢。优化的一种方式是压缩向量,比如改成用一个byte的整数来表示原来的float32。这样每个维度就从4个字节变成一个字节,存储空间变小,查询也变快。当然,压缩会损失精度,可能会导致求向量相似度的时候有误差。向量压缩的过程叫量化(Quantization)

上图中的Flat 表示按向量的原始方式存储向量,没有压缩。压缩的方式有标量量化Scalar Quantization (SQ) 和 乘积量化 Product Quantization (PQ)。上边举的例子(float32 -> byte)就是标量量化。

更多细节,请见文章开头给的四篇文章,我就不一一赘述了。

Qdrant的向量压缩算法

qdrant有篇文章介绍它的向量压缩算法,详细可见:

qdrant.tech/documentati...

上边是qdrant的各种量化方式及对应的准确率,速度和压缩比。qdrant还支持了一种二进制量化压缩算法,速度可以提升到原来的40倍,存储效率是原来的32倍,只损失5%的准确率,但只建议用在测试过的向量模型。

qdrant的压缩查询优化

查询的时候如果不想用量化,可以直接设置参数 ignore 为true关闭量化向量的使用。如果配置了量化配置,默认使用量化向量进行查询。

为了提高量化后的向量查询的准确率,qdrant还支持rescore参数和oversampling参数。

rescore就是用量化后的向量查询出top k后,再用原始向量去对比,找出最相似的。比如我要top 3,你找出后再对比也还是在这3个向量之前再排序,看上去没有什么作用?加上oversampling 参数就可以很大用处了。

oversampling 就是预先取多多少向量,再通过取原始向量计算并排序,返回最终真正需要的。比如top 3, oversampling是10,那就会按量化后的向量找出30个最相似的,然后按原始向量计算相似度再排序,返回这时算出来的top 3向量。

​真正去实践才发现细节很多,下场把手弄脏是学习最快的。

相关推荐
豆芽脚脚5 分钟前
MongoDB 导出和导入完整指南
数据库·mongodb
烧饼Fighting11 分钟前
Mysql替换为瀚高数据库部分函数转换V4.5版本
数据库·mysql
上善若水_厚德载物44 分钟前
Centos7 Mysql 5.7 读写分离
数据库·mysql
Mr__Miss1 小时前
Redis的持久化
数据库·redis·缓存
CCPC不拿奖不改名1 小时前
SQL基础(SQL小白教程):MySQL语句+环境一键搭建+面试习题
数据库·sql·计算机网络·mysql·oracle·面试·职场和发展
陈文锦丫1 小时前
JAVA面试
数据库·mysql
sunfove2 小时前
将 Python 仿真工具部署并嵌入个人博客
开发语言·数据库·python
冰清-小魔鱼3 小时前
各类数据存储结构总结
开发语言·数据结构·数据库
深藏bIue4 小时前
MongoDB 4.4.30安装、数据迁移
数据库·mongodb
benyuanone4 小时前
MySQL环境项目迁移成国产化达梦环境
数据库·mysql