这么多向量数据库,它们之间到底有哪些差异?

上篇说到chroma的近邻搜索算法实现得有问题,不如qdrant的。其实向量数据库之间看似都一样,但细细比较还是有很多不同的。

国外有一系列文章已经讲得很详细了,而且也就是半年前写的,还是具有很强的参考价值,文章如下:

Vector databases (1): What makes each one different?

Vector databases (2): Understanding their internals

Vector databases (3): Not all indexes are created equal

Vector databases (4): Analyzing the trade-offs

里边有很多细节,不想细看的,我这里给几张图给大家快速了解不同向量数据库的差异。

存在时间

**

**

实现语言及是否开源

托管方法

索引方法

向量压缩的概念

向量一般是由浮点数组成,比如float32。一个float32 占4个字节,当向量维度很高且向量很多时,向量存储空间会比较大,查询起来也会比较慢。优化的一种方式是压缩向量,比如改成用一个byte的整数来表示原来的float32。这样每个维度就从4个字节变成一个字节,存储空间变小,查询也变快。当然,压缩会损失精度,可能会导致求向量相似度的时候有误差。向量压缩的过程叫量化(Quantization)

上图中的Flat 表示按向量的原始方式存储向量,没有压缩。压缩的方式有标量量化Scalar Quantization (SQ) 和 乘积量化 Product Quantization (PQ)。上边举的例子(float32 -> byte)就是标量量化。

更多细节,请见文章开头给的四篇文章,我就不一一赘述了。

Qdrant的向量压缩算法

qdrant有篇文章介绍它的向量压缩算法,详细可见:

qdrant.tech/documentati...

上边是qdrant的各种量化方式及对应的准确率,速度和压缩比。qdrant还支持了一种二进制量化压缩算法,速度可以提升到原来的40倍,存储效率是原来的32倍,只损失5%的准确率,但只建议用在测试过的向量模型。

qdrant的压缩查询优化

查询的时候如果不想用量化,可以直接设置参数 ignore 为true关闭量化向量的使用。如果配置了量化配置,默认使用量化向量进行查询。

为了提高量化后的向量查询的准确率,qdrant还支持rescore参数和oversampling参数。

rescore就是用量化后的向量查询出top k后,再用原始向量去对比,找出最相似的。比如我要top 3,你找出后再对比也还是在这3个向量之前再排序,看上去没有什么作用?加上oversampling 参数就可以很大用处了。

oversampling 就是预先取多多少向量,再通过取原始向量计算并排序,返回最终真正需要的。比如top 3, oversampling是10,那就会按量化后的向量找出30个最相似的,然后按原始向量计算相似度再排序,返回这时算出来的top 3向量。

​真正去实践才发现细节很多,下场把手弄脏是学习最快的。

相关推荐
2501_903238653 分钟前
深入理解 JUnit 的 @RunWith 注解与自定义 Runner
数据库·junit·sqlserver·个人开发
小光学长13 分钟前
基于flask+vue框架的的医院预约挂号系统i1616(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。
数据库
听封21 分钟前
✨ 索引有哪些缺点以及具体有哪些索引类型
数据库·mysql
利瑞华26 分钟前
数据库索引:缺点与类型全解析
数据库·oracle
V+zmm1013429 分钟前
自驾游拼团小程序的设计与实现(ssm论文源码调试讲解)
java·数据库·微信小程序·小程序·毕业设计
ChinaRainbowSea40 分钟前
1. Linux下 MySQL 的详细安装与使用
linux·数据库·sql·mysql·adb
jay丿2 小时前
Redis 中列表(List)常见命令详解
数据库·redis·list
小林熬夜学编程2 小时前
【MySQL】第八弹---全面解析数据库表的增删改查操作:从创建到检索、排序与分页
linux·开发语言·数据库·mysql·算法
RainbowSea3 小时前
4. MySQL 逻辑架构说明
数据库·sql·mysql
AI趋势预见4 小时前
FinRL-DeepSeek: 大语言模型赋能的风险敏感型强化学习交易代理
数据库·人工智能·语言模型·自然语言处理·金融