Zookeeper选举Leader源码剖析

Zookeeper选举Leader源码剖析

leader选举流程

  • 参数说明
    • myid: 节点的唯一标识,手动设置
    • zxid: 当前节点中最大(新)的事务id
    • epoch-logic-clock: 同一轮投票过程中的逻辑时钟值相同,每投完一次值会增加
  • leader选举流程
    • 默认投票给自己,优先选择zxid大的为leader,因为zxid大的节点数据是最新的(理论上事务id越大,说明数据量越多也就意味着比较新),如果zxid一致,那么会选择myid大的为leader,当节点选票过半则选举成功

leader选举核心步骤

  • 源码大致流程

    • 初始化netty通信,客户端发送命令立刻监听到

    • 初始化内存数据库对象、初始化服务连接工厂等一些信息

      • 启动服务节点
        • 加载文件数据到内存
        • 启动netty服务
        • 初始化集群选举leader
        • 启动一个线程进行选举监听
        • 监听到选票,将选票丢到recvQueue队列中
    • 启动接收选票线程、发送选票线程进行监听,都去队列中接受和发送选票

    • 启动QuorumPeer线程执行run方法,根据节点状态判断

      • leading: socket监听follower节点,初始化LeaerZookeeperServer数据,同步数据到从节点,定时ping到follower节点请求保持长连接
        • follower: 与leader建立发送socket连接,注册自己到leader、同步leader数据、自旋接收leader同步数据,如果leader宕了,在finally中将自己的状态改为looking,进入下一轮自旋选举
        • looking: 节点启动后的默认状态,选举周期+1,初始化选票,默认选自己,发送选票到sendQueue队列,同时还会不断地从recvQueue队列拿选票进行选举
  • 问题: ZK的选举机制为什么存在大量自旋,如同步节点数据、选举流程,如果长时间运行会不会导致CPU资源损耗过大

    • 对于长时间自旋毋庸置疑肯定会导致CPU资源紧张,但是想达到动态监听数据变化就得牺牲一定的CPU性能,并且这样也能保证数据的强一致性,也能保证节点选举的实时性
    • 倘若想要优化ZK,可以引入Redis/MQ基于发布/订阅模式进行处理,但是这样会造成引入三方中间件导致复杂度提升
相关推荐
Light602 小时前
点燃变革:领码SPARK融合平台如何重塑OA,开启企业智慧协同新纪元?
大数据·分布式·spark
写代码的【黑咖啡】3 小时前
如何在大数据数仓中搭建数据集市
大数据·分布式·spark
SoleMotive.5 小时前
kafka选型
分布式·kafka
小二·6 小时前
MyBatis基础入门《十五》分布式事务实战:Seata + MyBatis 实现跨服务数据一致性
分布式·wpf·mybatis
feathered-feathered8 小时前
Redis基础知识+RDB+AOF(面试)
java·数据库·redis·分布式·后端·中间件·面试
lang201509288 小时前
深入解析Kafka Broker核心读写机制
分布式·kafka
lang201509289 小时前
Kafka高水位与日志末端偏移量解析
分布式·kafka
Tadas-Gao10 小时前
GraphQL:下一代API架构的设计哲学与实践创新
java·分布式·后端·微服务·架构·graphql
lang2015092810 小时前
Kafka副本管理核心:ReplicaManager揭秘
分布式·kafka·linq
GGBondlctrl12 小时前
【Redis】从单机架构到分布式,回溯架构的成长设计美学
分布式·缓存·架构·微服务架构·单机架构