Zookeeper选举Leader源码剖析

Zookeeper选举Leader源码剖析

leader选举流程

  • 参数说明
    • myid: 节点的唯一标识,手动设置
    • zxid: 当前节点中最大(新)的事务id
    • epoch-logic-clock: 同一轮投票过程中的逻辑时钟值相同,每投完一次值会增加
  • leader选举流程
    • 默认投票给自己,优先选择zxid大的为leader,因为zxid大的节点数据是最新的(理论上事务id越大,说明数据量越多也就意味着比较新),如果zxid一致,那么会选择myid大的为leader,当节点选票过半则选举成功

leader选举核心步骤

  • 源码大致流程

    • 初始化netty通信,客户端发送命令立刻监听到

    • 初始化内存数据库对象、初始化服务连接工厂等一些信息

      • 启动服务节点
        • 加载文件数据到内存
        • 启动netty服务
        • 初始化集群选举leader
        • 启动一个线程进行选举监听
        • 监听到选票,将选票丢到recvQueue队列中
    • 启动接收选票线程、发送选票线程进行监听,都去队列中接受和发送选票

    • 启动QuorumPeer线程执行run方法,根据节点状态判断

      • leading: socket监听follower节点,初始化LeaerZookeeperServer数据,同步数据到从节点,定时ping到follower节点请求保持长连接
        • follower: 与leader建立发送socket连接,注册自己到leader、同步leader数据、自旋接收leader同步数据,如果leader宕了,在finally中将自己的状态改为looking,进入下一轮自旋选举
        • looking: 节点启动后的默认状态,选举周期+1,初始化选票,默认选自己,发送选票到sendQueue队列,同时还会不断地从recvQueue队列拿选票进行选举
  • 问题: ZK的选举机制为什么存在大量自旋,如同步节点数据、选举流程,如果长时间运行会不会导致CPU资源损耗过大

    • 对于长时间自旋毋庸置疑肯定会导致CPU资源紧张,但是想达到动态监听数据变化就得牺牲一定的CPU性能,并且这样也能保证数据的强一致性,也能保证节点选举的实时性
    • 倘若想要优化ZK,可以引入Redis/MQ基于发布/订阅模式进行处理,但是这样会造成引入三方中间件导致复杂度提升
相关推荐
milanyangbo1 小时前
从硬盘I/O到网络传输:Kafka与RocketMQ读写模型及零拷贝技术深度对比
java·网络·分布式·架构·kafka·rocketmq
有梦想的攻城狮2 小时前
Rabbitmq在死信队列中的队头阻塞问题
分布式·rabbitmq·死信队列·延迟队列
Wang's Blog2 小时前
Elastic Stack梳理:深度解析Elasticsearch分布式查询机制与相关性算分优化实践
分布式·elasticsearch
bxlj_jcj2 小时前
分布式ID方案、雪花算法与时钟回拨问题
分布式·算法
java1234_小锋3 小时前
Kafka与RabbitMQ相比有什么优势?
分布式·kafka·rabbitmq
yumgpkpm3 小时前
腾讯TBDS和CMP(Cloud Data AI Platform,类Cloudera CDP,如华为鲲鹏 ARM 版)比较的缺陷在哪里?
hive·hadoop·elasticsearch·zookeeper·oracle·kafka·hbase
松☆3 小时前
Flutter 与 OpenHarmony 数据持久化协同方案:从 Shared Preferences 到分布式数据管理
分布式·flutter
踏浪无痕4 小时前
准备手写Simple Raft(四):日志终于能"生效"了
分布式·后端
龙仔7254 小时前
实现分布式读写集群(提升两台服务器的性能,支持分片存储+并行读写),Redis Cluster(Redis集群模式)并附排错过程
服务器·redis·分布式
mn_kw4 小时前
Spark Shuffle 深度解析与参数详解
大数据·分布式·spark