Apache celeborn 安装及使用教程

1.下载安装包

https://celeborn.apache.org/download/

测0.4.0时出现 https://github.com/apache/incubator-celeborn/issues/835

2.解压

tar -xzvf apache-celeborn-0.3.2-incubating-bin.tgz

3.修改配置文件

复制代码
cp celeborn-env.sh.template  celeborn-env.sh

cp log4j2.xml.template  log4j2.xml

cp celeborn-defaults.conf.template  cp celeborn-defaults.conf

3.1修改celeborn-env.sh

复制代码
CELEBORN_MASTER_MEMORY=2g
CELEBORN_WORKER_MEMORY=2g
CELEBORN_WORKER_OFFHEAP_MEMORY=4g

3.2 修改celeborn-defaults.conf

复制代码
# used by client and worker to connect to master
celeborn.master.endpoints 10.67.78.xx:9097

# used by master to bootstrap
celeborn.master.host 10.67.78.xx
celeborn.master.port 9097

celeborn.metrics.enabled true
celeborn.worker.flusher.buffer.size 256k

# If Celeborn workers have local disks and HDFS. Following configs should be added.
# If Celeborn workers have local disks, use following config.
# Disk type is HDD by defaut.
#celeborn.worker.storage.dirs /mnt/disk1:disktype=SSD,/mnt/disk2:disktype=SSD

# If Celeborn workers don't have local disks. You can use HDFS.
# Do not set `celeborn.worker.storage.dirs` and use following configs.
celeborn.storage.activeTypes HDFS
celeborn.worker.sortPartition.threads 64
celeborn.worker.commitFiles.timeout 240s
celeborn.worker.commitFiles.threads 128
celeborn.master.slot.assign.policy roundrobin
celeborn.rpc.askTimeout 240s
celeborn.worker.flusher.hdfs.buffer.size 4m
celeborn.storage.hdfs.dir hdfs://10.67.78.xx:8020/celeborn
celeborn.worker.replicate.fastFail.duration 240s

# If your hosts have disk raid or use lvm, set celeborn.worker.monitor.disk.enabled to false
celeborn.worker.monitor.disk.enabled false

4.复制到其他节点

复制代码
scp -r /root/apache-celeborn-0.3.2-incubating-bin 10.67.78.xx1:/root/
scp -r /root/apache-celeborn-0.3.2-incubating-bin 10.67.78.xx2:/root/

因为在配置文件中已经配置了master 所以启动matster和worker即可。

5.启动master和worker

复制代码
cd $CELEBORN_HOME
./sbin/start-master.sh



./sbin/start-worker.sh celeborn://<Master IP>:<Master Port>

之后在master的日志中看woker是否注册上

6.在 spark客户端使用

复制 CELEBORN_HOME/spark/\*.jar 到 SPARK_HOME/jars/

修改spark-defaults.conf

复制代码
# Shuffle manager class name changed in 0.3.0:
#    before 0.3.0: org.apache.spark.shuffle.celeborn.RssShuffleManager
#    since 0.3.0: org.apache.spark.shuffle.celeborn.SparkShuffleManager
spark.shuffle.manager org.apache.spark.shuffle.celeborn.SparkShuffleManager
# must use kryo serializer because java serializer do not support relocation
spark.serializer org.apache.spark.serializer.KryoSerializer

# celeborn master
spark.celeborn.master.endpoints clb-1:9097,clb-2:9097,clb-3:9097
# This is not necessary if your Spark external shuffle service is Spark 3.1 or newer
spark.shuffle.service.enabled false

# options: hash, sort
# Hash shuffle writer use (partition count) * (celeborn.push.buffer.max.size) * (spark.executor.cores) memory.
# Sort shuffle writer uses less memory than hash shuffle writer, if your shuffle partition count is large, try to use sort hash writer.  
spark.celeborn.client.spark.shuffle.writer hash

# We recommend setting spark.celeborn.client.push.replicate.enabled to true to enable server-side data replication
# If you have only one worker, this setting must be false 
# If your Celeborn is using HDFS, it's recommended to set this setting to false
spark.celeborn.client.push.replicate.enabled true

# Support for Spark AQE only tested under Spark 3
# we recommend setting localShuffleReader to false to get better performance of Celeborn
spark.sql.adaptive.localShuffleReader.enabled false

# If Celeborn is using HDFS
spark.celeborn.storage.hdfs.dir hdfs://<namenode>/celeborn

# we recommend enabling aqe support to gain better performance
spark.sql.adaptive.enabled true
spark.sql.adaptive.skewJoin.enabled true

# Support Spark Dynamic Resource Allocation
# Required Spark version >= 3.5.0 注意spark版本是否满足
spark.shuffle.sort.io.plugin.class org.apache.spark.shuffle.celeborn.CelebornShuffleDataIO
# Required Spark version >= 3.4.0, highly recommended to disable 注意spark版本是否满足
spark.dynamicAllocation.shuffleTracking.enabled false

7.启动spark-shell

复制代码
./bin/spark-shell 

spark.sparkContext.parallelize(1 to 1000, 1000).flatMap(_ => (1 to 100).iterator.map(num => num)).repartition(10).count
相关推荐
Aimyon_362 小时前
Apache Sqoop数据采集问题
hadoop·apache·sqoop
欧先生^_^1 天前
学习 Apache Kafka
学习·kafka·apache
欧先生^_^1 天前
Apache Spark 源码解析
大数据·spark·apache
w23617346012 天前
Apache中间件解析漏洞与安全加固
安全·中间件·apache
中科三方2 天前
APP和小程序需要注册域名吗?(国科云)
小程序·apache
Debug_TheWorld4 天前
Apache Flink 深度解析:流处理引擎的核心原理与生产实践指南
大数据·flink·apache
Apache IoTDB5 天前
Apache IoTDB V2.0.2/V1.3.4 发布|新增表模型权限管理、UDF、嵌套查询功能
apache·iotdb
ashane13146 天前
Apache PDFBox
apache
三次握手四次挥手6 天前
基于Python+Pytest实现自动化测试(全栈实战指南)
开发语言·python·自动化·k8s·apache·pytest·代码规范
自由如风7097 天前
Apache Atlas构建安装(Linux)
linux·运维·apache