PyTorch概述(五)---LINEAR

  • torch.nn.Linear
python 复制代码
torch.nn.Linear(in_features,out_features,bias=True,device=None,dtype=None)
  • 对输入的数据应用一个线性变换:
  • 该模块支持TensorFLoat32类型的数据;
  • 在某些ROCm设备上,使用float16类型的数据输入时,该模块在反向传播中使用不同的精度;

参数

  • in_features(int)---每一个输入样本数据的大小;
  • out_features(int)---每一个输出样本的大小;
  • bias(bool)---如果设置为Flase,该层将不学习一个可加合的偏置,默认为True;

形状

  • Input:(*,Hin)---这里的*意味着任何维度包括空,Hin=in_features;
  • OUtput(*,Hout)---这里除了最后一个维度之外,所有的形状同输入一样,Hout=out_features;

变量

  • weight(torch.Tensor)---形状为(out_features,in_features)的可学习的模块权重,值从初始化,这里;
  • bias---形状为(out_features)的可学习的偏置模块,如果设置为True,值从初始化,这里;

实例

python 复制代码
import torch
import torch.nn as nn

m=nn.Linear(20,30)
input=torch.randn(128,20)
output=m(input)
print(output.size())#torch.size([128,30])
相关推荐
TsingtaoAI3 小时前
企业实训|自动驾驶中的图像处理与感知技术——某央企汽车集团
图像处理·人工智能·自动驾驶·集成学习
王哈哈^_^3 小时前
YOLO11实例分割训练任务——从构建数据集到训练的完整教程
人工智能·深度学习·算法·yolo·目标检测·机器学习·计算机视觉
檐下翻书1734 小时前
从入门到精通:流程图制作学习路径规划
论文阅读·人工智能·学习·算法·流程图·论文笔记
SalvoGao4 小时前
Python学习 | 怎么理解epoch?
数据结构·人工智能·python·深度学习·学习
搬砖者(视觉算法工程师)5 小时前
自动驾驶汽车技术的工程原理与应用
人工智能·计算机视觉·自动驾驶
CV实验室5 小时前
2025 | 哈工大&鹏城实验室等提出 Cascade HQP-DETR:仅用合成数据实现SOTA目标检测,突破虚实鸿沟!
人工智能·目标检测·计算机视觉·哈工大
aitoolhub5 小时前
培训ppt高效制作:稿定设计 + Prompt 工程 30 分钟出图指南
人工智能·prompt·aigc
oranglay5 小时前
提示词(Prompt Engineering)核心思维
人工智能·prompt
极速learner5 小时前
【Prompt分享】自学英语教程的AI 提示语:流程、范例及可视化实现
人工智能·prompt·ai写作
大怪v5 小时前
我TM被AI骗的自己PUA了自己😂 😂 !细思极恐~
人工智能·chatgpt·grok