PyTorch概述(五)---LINEAR

  • torch.nn.Linear
python 复制代码
torch.nn.Linear(in_features,out_features,bias=True,device=None,dtype=None)
  • 对输入的数据应用一个线性变换:
  • 该模块支持TensorFLoat32类型的数据;
  • 在某些ROCm设备上,使用float16类型的数据输入时,该模块在反向传播中使用不同的精度;

参数

  • in_features(int)---每一个输入样本数据的大小;
  • out_features(int)---每一个输出样本的大小;
  • bias(bool)---如果设置为Flase,该层将不学习一个可加合的偏置,默认为True;

形状

  • Input:(*,Hin)---这里的*意味着任何维度包括空,Hin=in_features;
  • OUtput(*,Hout)---这里除了最后一个维度之外,所有的形状同输入一样,Hout=out_features;

变量

  • weight(torch.Tensor)---形状为(out_features,in_features)的可学习的模块权重,值从初始化,这里;
  • bias---形状为(out_features)的可学习的偏置模块,如果设置为True,值从初始化,这里;

实例

python 复制代码
import torch
import torch.nn as nn

m=nn.Linear(20,30)
input=torch.randn(128,20)
output=m(input)
print(output.size())#torch.size([128,30])
相关推荐
爱笑的眼睛112 分钟前
端到端语音识别系统的前沿实践与深度剖析:从RNN-T到Conformer
java·人工智能·python·ai
zl_vslam5 分钟前
SLAM中的非线性优-3D图优化之相对位姿g2o::EdgeSE3Expmap(十)
人工智能·算法·计算机视觉·3d
工业机器视觉设计和实现6 分钟前
极简单bpnet对比极简单cnn
人工智能·神经网络·cnn
AI浩6 分钟前
基于YOLO的小目标检测增强:一种提升精度与效率的新框架
人工智能·yolo·目标检测
2501_924794909 分钟前
告别“创意枯竭周期”:华为云Flexus AI智能体如何重构传统企业营销内容生产力
人工智能·重构·华为云
相思半9 分钟前
机器学习模型实战全解析
大数据·人工智能·笔记·python·机器学习·数据挖掘·transformer
普马萨特10 分钟前
新型基础设施运维(Infratech + GIS):一场被低估的结构性变革
运维·人工智能
这张生成的图像能检测吗10 分钟前
(论文速读)1DCNN-LSTM-ResNet:建筑损伤检测方法
人工智能·深度学习·计算机视觉·故障诊断·结构健康监测
知识分享小能手11 分钟前
CentOS Stream 9入门学习教程,从入门到精通,CentOS Stream 9 中人工智能 —语法详解与实战案例(14)
人工智能·学习·centos
这张生成的图像能检测吗22 分钟前
(论文速读)基于YCrCb-MST高光谱重建的太阳镜片颜色分类系统
人工智能·深度学习·计算机视觉·图像分类·高光谱