b站小土堆pytorch教程学习笔记
复现CIFAR10网络结构
python
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
class Han(nn.Module):
def __init__(self):
super(Han, self).__init__()
self.conv1=Conv2d(in_channels=3,out_channels=32,
kernel_size=5,padding=2,stride=1)
self.maxpool1=MaxPool2d(kernel_size=2)
self.conv2=Conv2d(in_channels=32,out_channels=32,
kernel_size=5,padding=2,stride=1)
self.maxpool2=MaxPool2d(kernel_size=2)
self.conv3=Conv2d(in_channels=32,out_channels=64,
kernel_size=5,padding=2,stride=1)
self.maxpool3=MaxPool2d(kernel_size=2)
self.flatten=Flatten()
self.linear1=Linear(1024,64)
self.linear2=Linear(64,10)
def forward(self,x):
x = self.conv1(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = self.maxpool2(x)
x = self.conv3(x)
x = self.maxpool3(x)
x = self.flatten(x)
x = self.linear1(x)
x = self.linear2(x)
return x
han=Han()
print(han)
Han(
(conv1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(flatten): Flatten(start_dim=1, end_dim=-1)
(linear1): Linear(in_features=1024, out_features=64, bias=True)
(linear2): Linear(in_features=64, out_features=10, bias=True)
)
检查网络正确性:
假定输入
python
#测试网络结构正确性
input=torch.ones((64,3,32,32))#产生都是1的输入
output=han(input)
print(output)
tensor([[ 0.0063, -0.0712, 0.0809, -0.0330, -0.1598, -0.0949, 0.0303, 0.0632,
0.0453, 0.0606]...
Sequential:
python
class Han(nn.Module):
def __init__(self):
super(Han, self).__init__()
# self.conv1=Conv2d(in_channels=3,out_channels=32,
# kernel_size=5,padding=2,stride=1)
# self.maxpool1=MaxPool2d(kernel_size=2)
# self.conv2=Conv2d(in_channels=32,out_channels=32,
# kernel_size=5,padding=2,stride=1)
# self.maxpool2=MaxPool2d(kernel_size=2)
# self.conv3=Conv2d(in_channels=32,out_channels=64,
# kernel_size=5,padding=2,stride=1)
# self.maxpool3=MaxPool2d(kernel_size=2)
# self.flatten=Flatten()
# self.linear1=Linear(1024,64)
# self.linear2=Linear(64,10)
self.model1=Sequential(
Conv2d(3,32,5,padding=2),
MaxPool2d(2),
Conv2d(32,32,5,padding=2),
MaxPool2d(2),
Conv2d(32,64,5,padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024,64),
Linear(64,10)
)
def forward(self,x):
# x = self.conv1(x)
# x = self.maxpool1(x)
# x = self.conv2(x)
# x = self.maxpool2(x)
# x = self.conv3(x)
# x = self.maxpool3(x)
# x = self.flatten(x)
# x = self.linear1(x)
# x = self.linear2(x)
x=self.model1(x)
return x
han=Han()
# print(han)
#测试网络结构正确性
input=torch.ones((64,3,32,32))#产生都是1的输入
output=han(input)
# print(output)
writer=SummaryWriter('logs/seq')
writer.add_graph(han,input)
writer.close()