7-pytorch-CIFAR10模型搭建

b站小土堆pytorch教程学习笔记

复现CIFAR10网络结构

python 复制代码
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear


class Han(nn.Module):
    def __init__(self):
        super(Han, self).__init__()
        self.conv1=Conv2d(in_channels=3,out_channels=32,
                          kernel_size=5,padding=2,stride=1)
        self.maxpool1=MaxPool2d(kernel_size=2)
        self.conv2=Conv2d(in_channels=32,out_channels=32,
                          kernel_size=5,padding=2,stride=1)
        self.maxpool2=MaxPool2d(kernel_size=2)
        self.conv3=Conv2d(in_channels=32,out_channels=64,
                          kernel_size=5,padding=2,stride=1)
        self.maxpool3=MaxPool2d(kernel_size=2)
        self.flatten=Flatten()
        self.linear1=Linear(1024,64)
        self.linear2=Linear(64,10)

    def forward(self,x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.conv3(x)
        x = self.maxpool3(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x

han=Han()
print(han)

Han(
(conv1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(flatten): Flatten(start_dim=1, end_dim=-1)
(linear1): Linear(in_features=1024, out_features=64, bias=True)
(linear2): Linear(in_features=64, out_features=10, bias=True)
)

检查网络正确性:

假定输入

python 复制代码
#测试网络结构正确性
input=torch.ones((64,3,32,32))#产生都是1的输入
output=han(input)
print(output)

tensor([[ 0.0063, -0.0712, 0.0809, -0.0330, -0.1598, -0.0949, 0.0303, 0.0632,
0.0453, 0.0606]...

Sequential:

python 复制代码
class Han(nn.Module):
    def __init__(self):
        super(Han, self).__init__()
        # self.conv1=Conv2d(in_channels=3,out_channels=32,
        #                   kernel_size=5,padding=2,stride=1)
        # self.maxpool1=MaxPool2d(kernel_size=2)
        # self.conv2=Conv2d(in_channels=32,out_channels=32,
        #                   kernel_size=5,padding=2,stride=1)
        # self.maxpool2=MaxPool2d(kernel_size=2)
        # self.conv3=Conv2d(in_channels=32,out_channels=64,
        #                   kernel_size=5,padding=2,stride=1)
        # self.maxpool3=MaxPool2d(kernel_size=2)
        # self.flatten=Flatten()
        # self.linear1=Linear(1024,64)
        # self.linear2=Linear(64,10)

        self.model1=Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,64,5,padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10)
        )

    def forward(self,x):
        # x = self.conv1(x)
        # x = self.maxpool1(x)
        # x = self.conv2(x)
        # x = self.maxpool2(x)
        # x = self.conv3(x)
        # x = self.maxpool3(x)
        # x = self.flatten(x)
        # x = self.linear1(x)
        # x = self.linear2(x)
        x=self.model1(x)
        return x
han=Han()
# print(han)
#测试网络结构正确性
input=torch.ones((64,3,32,32))#产生都是1的输入
output=han(input)
# print(output)

writer=SummaryWriter('logs/seq')
writer.add_graph(han,input)
writer.close()
相关推荐
weixin_4572971014 分钟前
RAG流程全解析:从数据到精准答案
人工智能
whaosoft-14314 分钟前
51c大模型~合集171
人工智能
arron889928 分钟前
YOLOv8n-pose 模型使用
人工智能·深度学习·yolo
万邦科技Lafite29 分钟前
利用淘宝开放API接口监控商品状态,掌握第一信息
大数据·python·电商开放平台·开放api接口·淘宝开放平台
AI人工智能+2 小时前
一种融合AI与OCR的施工许可证识别技术,提升工程监管效率,实现自动化、精准化处理。
人工智能·自动化·ocr·施工许可证识别
Hy行者勇哥2 小时前
Python 与 VS Code 结合操作指南
开发语言·python
大力水手(Popeye)2 小时前
Pytorch——tensor
人工智能·pytorch·python
ygy.白茶4 小时前
从电影分类到鸢尾花识别
人工智能
AI_gurubar6 小时前
大模型教机器人叠衣服:2025年”语言理解+多模态融合“的智能新篇
人工智能·机器人
飞翔的佩奇7 小时前
【完整源码+数据集+部署教程】表盘指针检测系统源码和数据集:改进yolo11-CA-HSFPN
python·yolo·计算机视觉·数据集·yolo11·表盘指针检测