7-pytorch-CIFAR10模型搭建

b站小土堆pytorch教程学习笔记

复现CIFAR10网络结构

python 复制代码
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear


class Han(nn.Module):
    def __init__(self):
        super(Han, self).__init__()
        self.conv1=Conv2d(in_channels=3,out_channels=32,
                          kernel_size=5,padding=2,stride=1)
        self.maxpool1=MaxPool2d(kernel_size=2)
        self.conv2=Conv2d(in_channels=32,out_channels=32,
                          kernel_size=5,padding=2,stride=1)
        self.maxpool2=MaxPool2d(kernel_size=2)
        self.conv3=Conv2d(in_channels=32,out_channels=64,
                          kernel_size=5,padding=2,stride=1)
        self.maxpool3=MaxPool2d(kernel_size=2)
        self.flatten=Flatten()
        self.linear1=Linear(1024,64)
        self.linear2=Linear(64,10)

    def forward(self,x):
        x = self.conv1(x)
        x = self.maxpool1(x)
        x = self.conv2(x)
        x = self.maxpool2(x)
        x = self.conv3(x)
        x = self.maxpool3(x)
        x = self.flatten(x)
        x = self.linear1(x)
        x = self.linear2(x)
        return x

han=Han()
print(han)

Han(
(conv1): Conv2d(3, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool1): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(32, 32, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv3): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
(maxpool3): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(flatten): Flatten(start_dim=1, end_dim=-1)
(linear1): Linear(in_features=1024, out_features=64, bias=True)
(linear2): Linear(in_features=64, out_features=10, bias=True)
)

检查网络正确性:

假定输入

python 复制代码
#测试网络结构正确性
input=torch.ones((64,3,32,32))#产生都是1的输入
output=han(input)
print(output)

tensor([[ 0.0063, -0.0712, 0.0809, -0.0330, -0.1598, -0.0949, 0.0303, 0.0632,
0.0453, 0.0606]...

Sequential:

python 复制代码
class Han(nn.Module):
    def __init__(self):
        super(Han, self).__init__()
        # self.conv1=Conv2d(in_channels=3,out_channels=32,
        #                   kernel_size=5,padding=2,stride=1)
        # self.maxpool1=MaxPool2d(kernel_size=2)
        # self.conv2=Conv2d(in_channels=32,out_channels=32,
        #                   kernel_size=5,padding=2,stride=1)
        # self.maxpool2=MaxPool2d(kernel_size=2)
        # self.conv3=Conv2d(in_channels=32,out_channels=64,
        #                   kernel_size=5,padding=2,stride=1)
        # self.maxpool3=MaxPool2d(kernel_size=2)
        # self.flatten=Flatten()
        # self.linear1=Linear(1024,64)
        # self.linear2=Linear(64,10)

        self.model1=Sequential(
            Conv2d(3,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,32,5,padding=2),
            MaxPool2d(2),
            Conv2d(32,64,5,padding=2),
            MaxPool2d(2),
            Flatten(),
            Linear(1024,64),
            Linear(64,10)
        )

    def forward(self,x):
        # x = self.conv1(x)
        # x = self.maxpool1(x)
        # x = self.conv2(x)
        # x = self.maxpool2(x)
        # x = self.conv3(x)
        # x = self.maxpool3(x)
        # x = self.flatten(x)
        # x = self.linear1(x)
        # x = self.linear2(x)
        x=self.model1(x)
        return x
han=Han()
# print(han)
#测试网络结构正确性
input=torch.ones((64,3,32,32))#产生都是1的输入
output=han(input)
# print(output)

writer=SummaryWriter('logs/seq')
writer.add_graph(han,input)
writer.close()
相关推荐
会飞的老朱12 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
聆风吟º13 小时前
CANN runtime 实战指南:异构计算场景中运行时组件的部署、调优与扩展技巧
人工智能·神经网络·cann·异构计算
寻星探路14 小时前
【深度长文】万字攻克网络原理:从 HTTP 报文解构到 HTTPS 终极加密逻辑
java·开发语言·网络·python·http·ai·https
Codebee16 小时前
能力中心 (Agent SkillCenter):开启AI技能管理新时代
人工智能
聆风吟º16 小时前
CANN runtime 全链路拆解:AI 异构计算运行时的任务管理与功能适配技术路径
人工智能·深度学习·神经网络·cann
uesowys16 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_567816 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
User_芊芊君子16 小时前
CANN大模型推理加速引擎ascend-transformer-boost深度解析:毫秒级响应的Transformer优化方案
人工智能·深度学习·transformer
ValhallaCoder16 小时前
hot100-二叉树I
数据结构·python·算法·二叉树
智驱力人工智能17 小时前
小区高空抛物AI实时预警方案 筑牢社区头顶安全的实践 高空抛物检测 高空抛物监控安装教程 高空抛物误报率优化方案 高空抛物监控案例分享
人工智能·深度学习·opencv·算法·安全·yolo·边缘计算