【自然语言处理四-从矩阵操作角度看 自注意self attention】

自然语言处理四-从矩阵操作角度看 自注意self attention

从矩阵角度看self attention

上一篇文章,【自然语言处理三-自注意self attention】介绍了如何实现selft attention,但没有介绍,为何自注意力就能解决参数扩张、无法并行等问题,仅仅用语言描述太过干涩,从矩阵操作的角度则可以清晰的了解,self attention的运作机制以及它如何解决这些问题的。

首先,还是先给出self attention的整体流程图

中间这个attention层,从输入到attention层的输出,就是我们是实现的目标,下面是一个简单的图示:

下面我们就从矩阵操作的角度来描述,具体如何实现中间这个self attention层。

获取Q K V矩阵

首先是根据输入乘上矩阵,获取qi,ki,vi

当我们将(ai,...an)整合成一个矩阵的时候,实际上这个操作是这样的:

这样我们的Q K V矩阵就是针对整个输入的了。

注意力分数

a1对于ai的注意力分数,是q1和ki的点乘,当然这个点乘操作在上文介绍过,可以有别的方法。

这个过程同样可以合并成一个矩阵操作,如下图:A矩阵中的每一列,就是ai对于其他输入的注意力分数

softmax

上述获取的A矩阵执行softmax操作

注意力的输出

softmax后的注意力分数,与其他输入的vi做乘法操作,获取最终注意力层的一个输出。

这个过程同样可以合并矩阵操作,如下:

最终的的这个O矩阵就是注意力的输出。

再来分析整体的attention的矩阵操作过程

这个总体的过程,可以用下面更简略的图来表示:

从矩阵操作角度看,self attention如何解决问题的?

1.解决参数可能急剧扩张的问题

我们从上面整体的矩阵操作过程来看,实际上只有三个矩阵Wq Wk Wv的参数需要学习,其他都是经过矩阵运算。

参数不会出现剧增

2.解决无法并行的问题

矩阵对于每个输入的操作,是并行的,不再像seq2seq架构一样,是按照时间步,一步步操作。

3.解决记忆能力的问题

attention的分数是基于全体输入的,且没有经过时间步的传播,因此记忆是基于全句子的,且信息没有丢失

Wq Wk Wv这三个矩阵怎么获得?

从整体流程来看,要实现attention,最关键的就是找到合适的Wq Wk Wv矩阵,那么这三个矩阵是怎么获得的呢?

它们是靠学习获得的,初始化后,经过模型输出,然后经过反向传播,通过调整误差,一步步的精确化了这三个矩阵

相关推荐
可爱美少女4 分钟前
Kaggle-Disaster Tweets-(二分类+NLP+模型融合)
自然语言处理·分类·数据挖掘
diu_lei4 分钟前
DeepSpeed ZeRO++:降低4倍网络通信,显著提高大模型及类ChatGPT模型训练效率
人工智能
meisongqing4 分钟前
【大模型】GPT-4、DeepSeek应用与Prompt使用技巧
人工智能·大模型·prompt
努力毕业的小土博^_^6 分钟前
【EI/Scopus顶会矩阵】2025年5-6月涵盖统计建模、数智转型、信息工程、数字系统、自动化系统领域,硕博生执笔未来!
人工智能·深度学习·线性代数·计算机视觉·矩阵·自动化·媒体
逛逛GitHub14 分钟前
这个 MCP 大本营发布,1400+ 工具等你来接。
人工智能·github
云卓SKYDROID22 分钟前
无人机故障冗余设计技术要点与难点!
人工智能·科技·无人机·科普·云卓科技
liruiqiang0526 分钟前
神经网络模型应用到机器学习时的难点
人工智能·深度学习·神经网络·机器学习
合合技术团队26 分钟前
TextIn ParseX文档解析参数使用指南(第一期)
大数据·人工智能·算法·ocr·文档解析
续亮~26 分钟前
提示词 (Prompt)
java·人工智能·prompt·ai编程·springai