【自然语言处理四-从矩阵操作角度看 自注意self attention】

自然语言处理四-从矩阵操作角度看 自注意self attention

从矩阵角度看self attention

上一篇文章,【自然语言处理三-自注意self attention】介绍了如何实现selft attention,但没有介绍,为何自注意力就能解决参数扩张、无法并行等问题,仅仅用语言描述太过干涩,从矩阵操作的角度则可以清晰的了解,self attention的运作机制以及它如何解决这些问题的。

首先,还是先给出self attention的整体流程图

中间这个attention层,从输入到attention层的输出,就是我们是实现的目标,下面是一个简单的图示:

下面我们就从矩阵操作的角度来描述,具体如何实现中间这个self attention层。

获取Q K V矩阵

首先是根据输入乘上矩阵,获取qi,ki,vi

当我们将(ai,...an)整合成一个矩阵的时候,实际上这个操作是这样的:

这样我们的Q K V矩阵就是针对整个输入的了。

注意力分数

a1对于ai的注意力分数,是q1和ki的点乘,当然这个点乘操作在上文介绍过,可以有别的方法。

这个过程同样可以合并成一个矩阵操作,如下图:A矩阵中的每一列,就是ai对于其他输入的注意力分数

softmax

上述获取的A矩阵执行softmax操作

注意力的输出

softmax后的注意力分数,与其他输入的vi做乘法操作,获取最终注意力层的一个输出。

这个过程同样可以合并矩阵操作,如下:

最终的的这个O矩阵就是注意力的输出。

再来分析整体的attention的矩阵操作过程

这个总体的过程,可以用下面更简略的图来表示:

从矩阵操作角度看,self attention如何解决问题的?

1.解决参数可能急剧扩张的问题

我们从上面整体的矩阵操作过程来看,实际上只有三个矩阵Wq Wk Wv的参数需要学习,其他都是经过矩阵运算。

参数不会出现剧增

2.解决无法并行的问题

矩阵对于每个输入的操作,是并行的,不再像seq2seq架构一样,是按照时间步,一步步操作。

3.解决记忆能力的问题

attention的分数是基于全体输入的,且没有经过时间步的传播,因此记忆是基于全句子的,且信息没有丢失

Wq Wk Wv这三个矩阵怎么获得?

从整体流程来看,要实现attention,最关键的就是找到合适的Wq Wk Wv矩阵,那么这三个矩阵是怎么获得的呢?

它们是靠学习获得的,初始化后,经过模型输出,然后经过反向传播,通过调整误差,一步步的精确化了这三个矩阵

相关推荐
政安晨1 小时前
政安晨【零基础玩转开源AI项目】- AutoGPT:全球首个自主AI Agent从入门到实战(致敬OpenClaw的小回顾)
人工智能·ai·autogpt·全球首个agent框架·致敬openclaw之作·参考价值·ai开源agent框架
Shawn_Shawn5 小时前
mcp学习笔记(一)-mcp核心概念梳理
人工智能·llm·mcp
33三 三like7 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a7 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者8 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗8 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
Coder_Boy_9 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信9 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_836235869 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活