半监督节点分类-graph learning

半监督节点分类相当于在一个图当中,用一部分节点的类别上已知的,有另外一部分节点的类别是未知的,目标是使用有标签的节点来推断没有标签的节点

注意 半监督节点分类属于直推式学习,直推式学习相当于出现新节点后,需要重新进行训练

但是图神经网络属于归纳式学习,当图当中出现一个新节点的时候,可以快速进行泛化

半监督节点分类问题的解决方法:节点特征工程;节点表示学习(图嵌入,如随机游走);标签传播(消息传递);图神经网络

massage passing:消息传递机制 相当于使用一个节点的领域的其他节点,来预测该节点

1.标签传播 label propagation (relational classification)

Two explanations for why behaviors of nodes in networks are correlated:

Homophily:具有相同属性的节点,更可能相连并具有相同的类别

Influence:社交关系会影响节点类别

首先,在初始化当中,需要将已知标签节点的类别设定为0或1.

然后将所有不知道类别的节点类别设定为0.5。

然后需要对所有未知节点值进行多轮加权平均/平均的计算。

然后不断进行计算,直到收敛(convergence)

Update all nodes in a random until convergence or until max number of Iteration is reached

缺点:仅使用到了网络的连接信息,没有使用到节点的属性特征;且并不能保证收敛

2.iterative classfication 算法 / ICA算法

既要用到图当中节点的属性特征,又要去用用图当中节点的连接信息

需要去训练两个分类器

第一个分类器仅仅使用节点的属性特征 base classifier

第二个分分类器,输入的是属性特征和连接信息。

使用节点的属性特征和网络的连接特征(即一个包含邻域节点类别信息的向量Z) relational classifier

首先需要使用已经标准的节点 作为训练集 来训练两个分类器

然后相当于使用第一个分类器来提供初始的节点标签

然后再使用第二个分类器进行不断的循环迭代。不断更新Y和Z

  1. Correct and Smooth

是一种后处理的方法

具体步骤:

首先需要理由已经标注的节点来训练一个 base predictor

第二步:然后use this base predictor to predict soft labels of all nodes

(注意这里第二步预测的是软标签,即例如class 0的概率是一个值,class 1的概率是一个值,这两个值的加和为1,且包括已经有类别标签的节点也许需要预测,得到所有节点的soft label)

We expect these soft label to be decently accurate.

we can use graph structure to post-process the predictions to make them more current.

相当于想让模型对于这些不太确信的节点更加确信。

第三步:post-process the predictions using graph structure to obtain the final prediction of all nodes

Correct and smooth use the 2-step procedure to post-process the soft predictions

分为correct step 和 smooth step

Correct step 当中相当于认为error在图当中也有homophily,因此应该分散不确定性和困惑度,仅仅计算有标注的

下一时刻的error矩阵既要和上一时刻的error矩阵相关,又需要和传播扩散相关

相当于将不确定性和困惑度进行了扩散

需要注意的是,在correct 和 smooth 当中,前者使用的是误差矩阵进行传播,但是后者

使用节点分类预测的置信度进行传播

4.Loopy Belief propagation

Belief propagation is a dynamic programming approach to answering probability

Queries in a graph

相当于节点和节点之间是可以传递消息的

相关推荐
訾博ZiBo11 分钟前
AI日报 - 2025年3月7日
人工智能
梓羽玩Python14 分钟前
一夜刷屏AI圈!Manus:这不是聊天机器人,是你的“AI打工仔”!
人工智能
Gene_INNOCENT15 分钟前
大型语言模型训练的三个阶段:Pre-Train、Instruction Fine-tuning、RLHF (PPO / DPO / GRPO)
人工智能·深度学习·语言模型
游戏智眼15 分钟前
中国团队发布通用型AI Agent产品Manus;GPT-4.5正式面向Plus用户推出;阿里发布并开源推理模型通义千问QwQ-32B...|游戏智眼日报
人工智能·游戏·游戏引擎·aigc
挣扎与觉醒中的技术人17 分钟前
如何优化FFmpeg拉流性能及避坑指南
人工智能·深度学习·性能优化·ffmpeg·aigc·ai编程
watersink20 分钟前
Dify框架下的基于RAG流程的政务检索平台
人工智能·深度学习·机器学习
脑极体24 分钟前
在MWC2025,读懂华为如何以行践言
大数据·人工智能·华为
DeepBI26 分钟前
AI+大数据:DeepBI重构竞品分析新思路
人工智能
KoiC28 分钟前
内网环境部署Deepseek+Dify,构建企业私有化AI应用
linux·人工智能·ubuntu·docker·大模型·ai应用·deepseek
不去幼儿园39 分钟前
【启发式算法】Dijkstra算法详细介绍(Python)
人工智能·python·算法·机器学习·启发式算法·图搜索算法