(202402)多智能体MetaGPT入门1:MetaGPT环境配置

文章目录

前言

感谢datawhale组织开源的多智能体学习内容,飞书文档地址在https://deepwisdom.feishu.cn/wiki/KhCcweQKmijXi6kDwnicM0qpnEf

拉取MetaGPT仓库

1 仅仅安装最新版

bash 复制代码
pip install git+https://github.com/geekan/MetaGPT.git

这种方式实际上等同于仓库克隆到缓存文件夹中,然后进行本地安装。

2 拉取源码本地安装

bash 复制代码
git clone https://github.com/geekan/MetaGPT.git
cd /your/path/to/MetaGPT
pip install -e .

为了使得安装速度加快,可以将pip使用-i参数添加镜像源。

MetaGPT安装成果全流程展示

conda新建虚拟环境。推荐使用miniconda。

bash 复制代码
conda create -n metagpt-learn python==3.10
source activate metagpt-learn

拉取仓库:因为不打算进行切换分支等操作,因此可以指定指定主分支和最小clone深度以加快速度。

并进行源码安装

bash 复制代码
git clone https://github.com/geekan/MetaGPT.git --depth 1 -b main
cd MetaGPT
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple -e .

从最后的输出结果可以看出安装的是0.7.2版本。
内容真是相当的多呢。

尝试简单使用

1 本地部署大模型尝试(失败-->成功)

目前文档中首推的依然是使用openai的API,也提供了使用国内星火大模型或是智谱的GLM大模型的API的方法。由于是简单demo,所以下面尝试使用本地部署的大模型进行MetaGPT的试用。

观察MetaGPT的config配置文件

bash 复制代码
cat config/config2.yaml
cat config/config2.example.yaml

通过对上面两个文件的观察,对于MetaGPT使用API的方式有了一定的了解。

下面尝试使用。

依照文档所言, MetaGPT将会按照下述优先级来读取你的配置:config/key.yaml > config/config.yaml > environment variable

所以

bash 复制代码
cd config
cp config2.yaml key.yaml
vim key.yaml

将文件内容改为以下内容
然后启动我的本地模型,这个模型很小,即使在cpu上运算生成tokens的速度仍然挺快,cpu(E5 2666v3)上约20tokens/s。

经过尝试,并没有读取key.yaml文件,而是读取的config2.yaml文件,修改后运行,出现错误,是api_type对不上导致的。

随便输入一个错误的api_type,可以获知metagpt支持的全部api_type。

bash 复制代码
For further information visit https://errors.pydantic.dev/2.5/v/missing
llm.api_type
  Input should be 'openai', 'anthropic', 'spark', 'zhipuai', 'fireworks', 'open_llm', 'gemini', 'metagpt', 'azure' or 'ollama' 

经查阅,我使用的llama.cpp部署了一个本地大模型,应该使用open_llm这个类型而不是ollama;并且api_key不能去掉,若去掉则报错,很难绷。并且我的模型在部署时没有指定api_key,按照惯例尝试了sk-no-key-requiredsk-no-key,均失败。故重新部署模型,仍然失败。解决后更新。

修改后的配置文件和结果展示如下,后面解决会进行更新:

(注意,下面的不是ease_url而是base_url,笔误。)

在大模型部署服务端返回状态码400,似乎是api_key错误导致的。

瓜,本地部署写在配置文件里的url加了https了,应改为http,本地部署哪来的ssl/rsl,不加s。

然后成功调用了本地部署的API

2 讯飞星火API调用

为了先完成任务,现在使用讯飞星火大模型。

bash 复制代码
llm:
  api_type: 'spark'
  app_id: 'YOUR_APPID'
  api_key: 'YOUR_API_KEY'
  api_secret: 'YOUR_API_SECRET'
  domain: 'generalv3'
  base_url: 'wss://spark-api.xf-yun.com/v3.1/chat'

效果展示:

进入example文件夹运行llm_hello_world.py
调国内API当然是不能失败的。

相关推荐
居7然5 小时前
ChatGPT是怎么学会接龙的?
深度学习·语言模型·chatgpt·性能优化·transformer
5Gcamera5 小时前
4G body camera BC310/BC310D user manual
人工智能·边缘计算·智能安全帽·执法记录仪·smarteye
爱喝可乐的老王6 小时前
机器学习中常用交叉验证总结
人工智能·机器学习
公链开发7 小时前
2026 Web3机构级风口:RWA Tokenization + ZK隐私系统定制开发全解析
人工智能·web3·区块链
wyw00007 小时前
目标检测之YOLO
人工智能·yolo·目标检测
发哥来了7 小时前
AI视频生成企业级方案选型指南:2025年核心能力与成本维度深度对比
大数据·人工智能
_codemonster7 小时前
强化学习入门到实战系列(四)马尔科夫决策过程
人工智能
北邮刘老师7 小时前
智能体治理:人工智能时代信息化系统的全新挑战与课题
大数据·人工智能·算法·机器学习·智能体互联网
laplace01237 小时前
第七章 构建自己的agent智能体框架
网络·人工智能·microsoft·agent
诗词在线7 小时前
中国古代诗词名句按主题分类有哪些?(爱国 / 思乡 / 送别)
人工智能·python·分类·数据挖掘