pytorch -- torch.nn.Module

  1. 基础

    torch.nn 是 PyTorch 中用于构建神经网络的模块。nn.Module包含网络各层的定义及forward方法。

    在用户自定义神经网络时,需要继承自nn.Module类。通过继承 nn.Module 类,您可以创建自己的神经网络模型,并定义模型的结构和操作。
    torch.nn 模块中常用的一些类和函数

    nn.Linear: 线性层,用于定义全连接层。

    nn.Conv2d: 二维卷积层,用于处理图像数据。

    nn.ReLU: ReLU 激活函数。

    nn.Sigmoid: Sigmoid 激活函数。

    nn.Dropout: Dropout 层,用于正则化和防止过拟合。

    nn.CrossEntropyLoss: 交叉熵损失函数,通常用于多类别分类问题。

    nn.MSELoss: 均方误差损失函数,通常用于回归问题。

    nn.Sequential: 顺序容器,用于按顺序组合多个层。

    还能使用 PyTorch 提供的优化器(如 torch.optim)和损失函数来训练和优化模型。

  2. 使用

python 复制代码
import torch
from torch.nn import Module
class yaya(Module):

    def __init__(self):
        super().__init__()
    def forward(self,input):
        output = input+1
        return output

tu = yaya()
x = torch.tensor(1.0)
output = tu(x)
print(output)
相关推荐
-dcr6 小时前
49.python自动化
运维·python·自动化
code bean6 小时前
Flask图片服务在不同网络接口下的路径解析问题及解决方案
后端·python·flask
人工智能培训6 小时前
10分钟了解向量数据库(3)
人工智能·大模型·知识图谱·强化学习·智能体搭建
华清远见成都中心6 小时前
人工智能要学习的课程有哪些?
人工智能·学习
Chasing Aurora6 小时前
Python后端开发之旅(三)
开发语言·python·langchain·protobuf
普通网友7 小时前
Bard 的模型压缩技术:在保证性能的前提下如何实现轻量化部署
人工智能·机器学习·bard
白帽子黑客罗哥7 小时前
不同就业方向(如AI、网络安全、前端开发)的具体学习路径和技能要求是什么?
人工智能·学习·web安全
捕风捉你7 小时前
【AI转行04】特征工程:治疗 AI 的“学不会”和“想太多”
人工智能·深度学习·机器学习
何贤7 小时前
2026 年程序员自救指南
人工智能·程序员·掘金技术征文
AKAMAI7 小时前
分布式边缘推理正在改变一切
人工智能·分布式·云计算