pytorch -- torch.nn.Module

  1. 基础

    torch.nn 是 PyTorch 中用于构建神经网络的模块。nn.Module包含网络各层的定义及forward方法。

    在用户自定义神经网络时,需要继承自nn.Module类。通过继承 nn.Module 类,您可以创建自己的神经网络模型,并定义模型的结构和操作。
    torch.nn 模块中常用的一些类和函数

    nn.Linear: 线性层,用于定义全连接层。

    nn.Conv2d: 二维卷积层,用于处理图像数据。

    nn.ReLU: ReLU 激活函数。

    nn.Sigmoid: Sigmoid 激活函数。

    nn.Dropout: Dropout 层,用于正则化和防止过拟合。

    nn.CrossEntropyLoss: 交叉熵损失函数,通常用于多类别分类问题。

    nn.MSELoss: 均方误差损失函数,通常用于回归问题。

    nn.Sequential: 顺序容器,用于按顺序组合多个层。

    还能使用 PyTorch 提供的优化器(如 torch.optim)和损失函数来训练和优化模型。

  2. 使用

python 复制代码
import torch
from torch.nn import Module
class yaya(Module):

    def __init__(self):
        super().__init__()
    def forward(self,input):
        output = input+1
        return output

tu = yaya()
x = torch.tensor(1.0)
output = tu(x)
print(output)
相关推荐
5Gcamera1 天前
4G body camera BC310/BC310D user manual
人工智能·边缘计算·智能安全帽·执法记录仪·smarteye
梨子串桃子_1 天前
推荐系统学习笔记 | PyTorch学习笔记
pytorch·笔记·python·学习·算法
爱喝可乐的老王1 天前
机器学习中常用交叉验证总结
人工智能·机器学习
公链开发1 天前
2026 Web3机构级风口:RWA Tokenization + ZK隐私系统定制开发全解析
人工智能·web3·区块链
wyw00001 天前
目标检测之YOLO
人工智能·yolo·目标检测
发哥来了1 天前
AI视频生成企业级方案选型指南:2025年核心能力与成本维度深度对比
大数据·人工智能
文言一心1 天前
LINUX离线升级 Python 至 3.11.9 操作手册
linux·运维·python
_codemonster1 天前
强化学习入门到实战系列(四)马尔科夫决策过程
人工智能
北邮刘老师1 天前
智能体治理:人工智能时代信息化系统的全新挑战与课题
大数据·人工智能·算法·机器学习·智能体互联网