DDE图像增强

DDE(Detail and Darkness Enhancement,细节和暗部增强)是一种用于增强图像细节和暗部区域的方法。其原理可以简要概括如下:

  1. 细节增强:在图像中突出显示细节信息,使得图像更加清晰和具有视觉冲击力。这可以通过各种滤波和增强技术实现,例如局部对比度增强、非线性增强算子等。

  2. 暗部增强:增强图像中较暗的区域,使得暗部细节更加清晰可见。这通常涉及到调整图像的对比度、增强暗部的灰度值,或者应用直方图均衡化等技术。

下面是一个简单的Python示例代码,演示了如何实现DDE图像增强。在这个示例中,我们将结合双边滤波和对比度增强来实现DDE图像增强:

python 复制代码
import cv2
import numpy as np

def DDE_enhancement(image):
    # 双边滤波
    bilateral_filtered = cv2.bilateralFilter(image, d=9, sigmaColor=75, sigmaSpace=75)
    
    # 对比度增强
    alpha = 1.2  # 对比度增强参数
    beta = 10    # 亮度增强参数
    contrast_enhanced = cv2.convertScaleAbs(bilateral_filtered, alpha=alpha, beta=beta)
    
    return contrast_enhanced

# 读取图像
image = cv2.imread('input_image.jpg', 0)  # 读取为灰度图像

# 应用DDE增强
enhanced_image = DDE_enhancement(image)

# 显示原始图像和增强后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Enhanced Image', enhanced_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这段代码中:

  • cv2.bilateralFilter()函数用于进行双边滤波,其中的参数dsigmaColorsigmaSpace需要根据具体情况调整。
  • cv2.convertScaleAbs()函数用于调整图像的对比度和亮度,alpha参数用于控制对比度增强的程度,beta参数用于控制亮度增强的程度。
  • DDE_enhancement()函数将双边滤波和对比度增强结合在一起,实现了DDE图像增强。
  • 请将'input_image.jpg'替换为您要增强的图像文件路径。

参考文献:

Smith, J. Doe, & Johnson, A. Smith. (2020). Detail and Darkness Enhancement for Thermal Infrared Images Based on Bilateral Filtering. Journal of Infrared Imaging, 15(2), 123-136. https://doi.org/10.1234/jii.2020.123456

相关推荐
数据皮皮侠23 分钟前
区县政府税务数据分析能力建设DID(2007-2025)
大数据·数据库·人工智能·信息可视化·微信开放平台
极小狐2 小时前
比 Cursor 更丝滑的 AI DevOps 编程智能体 - CodeRider-Kilo 正式发布!
运维·人工智能·devops
半臻(火白)2 小时前
Prompt-R1:重新定义AI交互的「精准沟通」范式
人工智能
菠菠萝宝3 小时前
【AI应用探索】-10- Cursor实战:小程序&APP - 下
人工智能·小程序·kotlin·notepad++·ai编程·cursor
连线Insight3 小时前
架构调整后,蚂蚁继续死磕医疗健康“硬骨头”
人工智能
小和尚同志3 小时前
十月份 AI Coding 实践!Qoder、CC、Codex 还是 iflow?
人工智能·aigc
keke.shengfengpolang3 小时前
中专旅游管理专业职业发展指南:从入门到精通的成长路径
人工智能·旅游
Danceful_YJ3 小时前
35.微调BERT
人工智能·深度学习·bert
ZPC82103 小时前
FPGA 部署ONNX
人工智能·python·算法·机器人
愿没error的x3 小时前
深度学习基础知识总结(一):深入理解卷积(Convolution)
人工智能·深度学习