DDE图像增强

DDE(Detail and Darkness Enhancement,细节和暗部增强)是一种用于增强图像细节和暗部区域的方法。其原理可以简要概括如下:

  1. 细节增强:在图像中突出显示细节信息,使得图像更加清晰和具有视觉冲击力。这可以通过各种滤波和增强技术实现,例如局部对比度增强、非线性增强算子等。

  2. 暗部增强:增强图像中较暗的区域,使得暗部细节更加清晰可见。这通常涉及到调整图像的对比度、增强暗部的灰度值,或者应用直方图均衡化等技术。

下面是一个简单的Python示例代码,演示了如何实现DDE图像增强。在这个示例中,我们将结合双边滤波和对比度增强来实现DDE图像增强:

python 复制代码
import cv2
import numpy as np

def DDE_enhancement(image):
    # 双边滤波
    bilateral_filtered = cv2.bilateralFilter(image, d=9, sigmaColor=75, sigmaSpace=75)
    
    # 对比度增强
    alpha = 1.2  # 对比度增强参数
    beta = 10    # 亮度增强参数
    contrast_enhanced = cv2.convertScaleAbs(bilateral_filtered, alpha=alpha, beta=beta)
    
    return contrast_enhanced

# 读取图像
image = cv2.imread('input_image.jpg', 0)  # 读取为灰度图像

# 应用DDE增强
enhanced_image = DDE_enhancement(image)

# 显示原始图像和增强后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Enhanced Image', enhanced_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这段代码中:

  • cv2.bilateralFilter()函数用于进行双边滤波,其中的参数dsigmaColorsigmaSpace需要根据具体情况调整。
  • cv2.convertScaleAbs()函数用于调整图像的对比度和亮度,alpha参数用于控制对比度增强的程度,beta参数用于控制亮度增强的程度。
  • DDE_enhancement()函数将双边滤波和对比度增强结合在一起,实现了DDE图像增强。
  • 请将'input_image.jpg'替换为您要增强的图像文件路径。

参考文献:

Smith, J. Doe, & Johnson, A. Smith. (2020). Detail and Darkness Enhancement for Thermal Infrared Images Based on Bilateral Filtering. Journal of Infrared Imaging, 15(2), 123-136. https://doi.org/10.1234/jii.2020.123456

相关推荐
延凡科技3 小时前
无人机低空智能巡飞巡检平台:全域感知与智能决策的低空作业中枢
大数据·人工智能·科技·安全·无人机·能源
2501_941329723 小时前
YOLOv8-SEAMHead改进实战:书籍检测与识别系统优化方案
人工智能·yolo·目标跟踪
晓翔仔5 小时前
【深度实战】Agentic AI 安全攻防指南:基于 CSA 红队测试手册的 12 类风险完整解析
人工智能·安全·ai·ai安全
百家方案5 小时前
2026年数据治理整体解决方案 - 全1066页下载
大数据·人工智能·数据治理
北京耐用通信5 小时前
工业自动化中耐达讯自动化Profibus光纤链路模块连接RFID读写器的应用
人工智能·科技·物联网·自动化·信息与通信
小韩博7 小时前
一篇文章讲清AI核心概念之(LLM、Agent、MCP、Skills) -- 从解决问题的角度来说明
人工智能
沃达德软件7 小时前
人工智能治安管控系统
图像处理·人工智能·深度学习·目标检测·计算机视觉·目标跟踪·视觉检测
高工智能汽车8 小时前
爱芯元智通过港交所聆讯,智能汽车芯片市场格局加速重构
人工智能·重构·汽车
大力财经8 小时前
悬架、底盘、制动被同时重构,星空计划想把“驾驶”变成一种系统能力
人工智能
梁下轻语的秋缘9 小时前
Prompt工程核心指南:从入门到精通,让AI精准响应你的需求
大数据·人工智能·prompt