DDE图像增强

DDE(Detail and Darkness Enhancement,细节和暗部增强)是一种用于增强图像细节和暗部区域的方法。其原理可以简要概括如下:

  1. 细节增强:在图像中突出显示细节信息,使得图像更加清晰和具有视觉冲击力。这可以通过各种滤波和增强技术实现,例如局部对比度增强、非线性增强算子等。

  2. 暗部增强:增强图像中较暗的区域,使得暗部细节更加清晰可见。这通常涉及到调整图像的对比度、增强暗部的灰度值,或者应用直方图均衡化等技术。

下面是一个简单的Python示例代码,演示了如何实现DDE图像增强。在这个示例中,我们将结合双边滤波和对比度增强来实现DDE图像增强:

python 复制代码
import cv2
import numpy as np

def DDE_enhancement(image):
    # 双边滤波
    bilateral_filtered = cv2.bilateralFilter(image, d=9, sigmaColor=75, sigmaSpace=75)
    
    # 对比度增强
    alpha = 1.2  # 对比度增强参数
    beta = 10    # 亮度增强参数
    contrast_enhanced = cv2.convertScaleAbs(bilateral_filtered, alpha=alpha, beta=beta)
    
    return contrast_enhanced

# 读取图像
image = cv2.imread('input_image.jpg', 0)  # 读取为灰度图像

# 应用DDE增强
enhanced_image = DDE_enhancement(image)

# 显示原始图像和增强后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Enhanced Image', enhanced_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这段代码中:

  • cv2.bilateralFilter()函数用于进行双边滤波,其中的参数dsigmaColorsigmaSpace需要根据具体情况调整。
  • cv2.convertScaleAbs()函数用于调整图像的对比度和亮度,alpha参数用于控制对比度增强的程度,beta参数用于控制亮度增强的程度。
  • DDE_enhancement()函数将双边滤波和对比度增强结合在一起,实现了DDE图像增强。
  • 请将'input_image.jpg'替换为您要增强的图像文件路径。

参考文献:

Smith, J. Doe, & Johnson, A. Smith. (2020). Detail and Darkness Enhancement for Thermal Infrared Images Based on Bilateral Filtering. Journal of Infrared Imaging, 15(2), 123-136. https://doi.org/10.1234/jii.2020.123456

相关推荐
北方有星辰zz4 分钟前
语音识别:概念与接口
网络·人工智能·语音识别
阿里-于怀17 分钟前
携程旅游的 AI 网关落地实践
人工智能·网关·ai·旅游·携程·higress·ai网关
赴33543 分钟前
神经网络和深度学习介绍
人工智能·深度学习·反向传播
爱看科技1 小时前
英伟达新架构9B模型引领革命,谷歌/阿里/微美全息AI多维布局锻造底座竞争力
人工智能·架构
做科研的周师兄3 小时前
【机器学习入门】1.2 初识机器学习:从数据到智能的认知之旅
大数据·数据库·人工智能·python·机器学习·数据分析·机器人
JosieBook3 小时前
【人工智能】人工智能在企业中的应用
人工智能
技术与健康4 小时前
LLM实践系列:利用LLM重构数据科学流程04 - 智能特征工程
数据库·人工智能·重构
无风听海4 小时前
行向量和列向量在神经网络应用中的选择
人工智能·深度学习·神经网络·行向量·列向量
一点一木4 小时前
主流 AI 提示词优化工具推荐(2025 全面对比指南)
人工智能·openai·ai编程
全栈小55 小时前
【AI编程】如何快速通过AI IDE集成开发工具来生成一个简易留言板系统
ide·人工智能·ai编程