DDE图像增强

DDE(Detail and Darkness Enhancement,细节和暗部增强)是一种用于增强图像细节和暗部区域的方法。其原理可以简要概括如下:

  1. 细节增强:在图像中突出显示细节信息,使得图像更加清晰和具有视觉冲击力。这可以通过各种滤波和增强技术实现,例如局部对比度增强、非线性增强算子等。

  2. 暗部增强:增强图像中较暗的区域,使得暗部细节更加清晰可见。这通常涉及到调整图像的对比度、增强暗部的灰度值,或者应用直方图均衡化等技术。

下面是一个简单的Python示例代码,演示了如何实现DDE图像增强。在这个示例中,我们将结合双边滤波和对比度增强来实现DDE图像增强:

python 复制代码
import cv2
import numpy as np

def DDE_enhancement(image):
    # 双边滤波
    bilateral_filtered = cv2.bilateralFilter(image, d=9, sigmaColor=75, sigmaSpace=75)
    
    # 对比度增强
    alpha = 1.2  # 对比度增强参数
    beta = 10    # 亮度增强参数
    contrast_enhanced = cv2.convertScaleAbs(bilateral_filtered, alpha=alpha, beta=beta)
    
    return contrast_enhanced

# 读取图像
image = cv2.imread('input_image.jpg', 0)  # 读取为灰度图像

# 应用DDE增强
enhanced_image = DDE_enhancement(image)

# 显示原始图像和增强后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Enhanced Image', enhanced_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这段代码中:

  • cv2.bilateralFilter()函数用于进行双边滤波,其中的参数dsigmaColorsigmaSpace需要根据具体情况调整。
  • cv2.convertScaleAbs()函数用于调整图像的对比度和亮度,alpha参数用于控制对比度增强的程度,beta参数用于控制亮度增强的程度。
  • DDE_enhancement()函数将双边滤波和对比度增强结合在一起,实现了DDE图像增强。
  • 请将'input_image.jpg'替换为您要增强的图像文件路径。

参考文献:

Smith, J. Doe, & Johnson, A. Smith. (2020). Detail and Darkness Enhancement for Thermal Infrared Images Based on Bilateral Filtering. Journal of Infrared Imaging, 15(2), 123-136. https://doi.org/10.1234/jii.2020.123456

相关推荐
老欧学视觉几秒前
0010集成学习(Ensemble Learning)
人工智能·机器学习·集成学习
lqqjuly8 分钟前
《AI Agent智能体与MCP开发实战》之构建个性化的arXiv科研论文MCP服务实战
人工智能·深度学习
羊仔AI探索9 分钟前
GLM-4.6接入Claude Code插件,国内丝滑编程
ide·人工智能·ai·aigc·ai编程
Bdygsl10 分钟前
数字图像处理总结 Day 1
人工智能·算法·计算机视觉
墨染星辰云水间11 分钟前
机器学习(一)
人工智能·机器学习
张彦峰ZYF13 分钟前
Coze文章仿写:智能体 + 工作流实现内容自动生成与插图输出
人工智能·ai·coze dify
Jerry.张蒙15 分钟前
SAP传输请求流程:从开发到生产的安全流转
大数据·网络·人工智能·学习·职场和发展·区块链·运维开发
Lethehong20 分钟前
openGauss在教育领域的AI实践:基于Java JDBC的学生成绩预测系统
java·开发语言·人工智能·sql·rag
山科智能信息处理实验室21 分钟前
PCDreamer:基于多视角扩散先验的点云补全
人工智能
LDG_AGI26 分钟前
【推荐系统】深度学习训练框架(六):PyTorch DDP(DistributedDataParallel)数据并行分布式深度学习原理
人工智能·pytorch·分布式·python·深度学习·算法·spark