DDE图像增强

DDE(Detail and Darkness Enhancement,细节和暗部增强)是一种用于增强图像细节和暗部区域的方法。其原理可以简要概括如下:

  1. 细节增强:在图像中突出显示细节信息,使得图像更加清晰和具有视觉冲击力。这可以通过各种滤波和增强技术实现,例如局部对比度增强、非线性增强算子等。

  2. 暗部增强:增强图像中较暗的区域,使得暗部细节更加清晰可见。这通常涉及到调整图像的对比度、增强暗部的灰度值,或者应用直方图均衡化等技术。

下面是一个简单的Python示例代码,演示了如何实现DDE图像增强。在这个示例中,我们将结合双边滤波和对比度增强来实现DDE图像增强:

python 复制代码
import cv2
import numpy as np

def DDE_enhancement(image):
    # 双边滤波
    bilateral_filtered = cv2.bilateralFilter(image, d=9, sigmaColor=75, sigmaSpace=75)
    
    # 对比度增强
    alpha = 1.2  # 对比度增强参数
    beta = 10    # 亮度增强参数
    contrast_enhanced = cv2.convertScaleAbs(bilateral_filtered, alpha=alpha, beta=beta)
    
    return contrast_enhanced

# 读取图像
image = cv2.imread('input_image.jpg', 0)  # 读取为灰度图像

# 应用DDE增强
enhanced_image = DDE_enhancement(image)

# 显示原始图像和增强后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Enhanced Image', enhanced_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这段代码中:

  • cv2.bilateralFilter()函数用于进行双边滤波,其中的参数dsigmaColorsigmaSpace需要根据具体情况调整。
  • cv2.convertScaleAbs()函数用于调整图像的对比度和亮度,alpha参数用于控制对比度增强的程度,beta参数用于控制亮度增强的程度。
  • DDE_enhancement()函数将双边滤波和对比度增强结合在一起,实现了DDE图像增强。
  • 请将'input_image.jpg'替换为您要增强的图像文件路径。

参考文献:

Smith, J. Doe, & Johnson, A. Smith. (2020). Detail and Darkness Enhancement for Thermal Infrared Images Based on Bilateral Filtering. Journal of Infrared Imaging, 15(2), 123-136. https://doi.org/10.1234/jii.2020.123456

相关推荐
~~李木子~~5 小时前
中文垃圾短信分类实验报告
人工智能·分类·数据挖掘
TsingtaoAI9 小时前
企业实训|自动驾驶中的图像处理与感知技术——某央企汽车集团
图像处理·人工智能·自动驾驶·集成学习
王哈哈^_^9 小时前
YOLO11实例分割训练任务——从构建数据集到训练的完整教程
人工智能·深度学习·算法·yolo·目标检测·机器学习·计算机视觉
檐下翻书1739 小时前
从入门到精通:流程图制作学习路径规划
论文阅读·人工智能·学习·算法·流程图·论文笔记
SalvoGao10 小时前
Python学习 | 怎么理解epoch?
数据结构·人工智能·python·深度学习·学习
搬砖者(视觉算法工程师)11 小时前
自动驾驶汽车技术的工程原理与应用
人工智能·计算机视觉·自动驾驶
CV实验室11 小时前
2025 | 哈工大&鹏城实验室等提出 Cascade HQP-DETR:仅用合成数据实现SOTA目标检测,突破虚实鸿沟!
人工智能·目标检测·计算机视觉·哈工大
aitoolhub11 小时前
培训ppt高效制作:稿定设计 + Prompt 工程 30 分钟出图指南
人工智能·prompt·aigc
oranglay11 小时前
提示词(Prompt Engineering)核心思维
人工智能·prompt
极速learner11 小时前
【Prompt分享】自学英语教程的AI 提示语:流程、范例及可视化实现
人工智能·prompt·ai写作