数据分析-Pandas数据探查初步圆饼图

数据分析-Pandas数据探查初步圆饼图

数据分析和处理中,难免会遇到各种数据,那么数据呈现怎样的规律呢?不管金融数据,风控数据,营销数据等等,莫不如此。如何通过图示展示数据的规律?

数据表,时间序列数据在数据分析建模中很常见,例如天气预报,空气状态监测,股票交易等金融场景。数据分析过程中重新调整,重塑数据表是很重要的技巧,此处选择Titanic数据,以及巴黎、伦敦欧洲城市空气质量监测 N O 2 NO_2 NO2数据作为样例。

数据分析

数据分析-Pandas如何转换产生新列

数据分析-Pandas如何统计数据概况

数据分析-Pandas如何轻松处理时间序列数据

数据分析-Pandas如何选择数据子集

数据分析-Pandas如何重塑数据表-CSDN博客

经典算法

经典算法-遗传算法的python实现

经典算法-模拟退火算法的python实现

经典算法-粒子群算法的python实现-CSDN博客

本文用到的样例数据:

Titanic数据

空气质量监测 N O 2 NO_2 NO2数据

样例代码:

源代码参考 Pandas如何重塑数据表

源代码参考 python数据分析-数据表读写到pandas

导入关键模块

python 复制代码
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

plt.close("all")

很多时候需要了解各类数据的占比关系,这时候可以试试圆饼图。

探究数据的比例关系

当使用的是各类型数据时,如何把数据的比例关系展示呢?比如,想知道食品的成分比例,销售地区的销售业绩,产品的销售占比等等。

该例使用随机生成数据来举例。

python 复制代码
np.random.seed(36)

series = pd.Series(3 * np.random.rand(4), index=["a", "b", "c", "d"], name="series")

series.plot.pie(figsize=(6, 6));

多组各类占比关系

例如医学里面的常见药物效果对照,一组是服药,一组是安慰剂,想查看它们之间的关系,需要在一幅图展示,怎么办?

当使用Dataframe画饼图时,想画多组数据的比较,它是按每列column一张饼图。有多少列就可以画多少个,当然,需要设定参数 y 或 subplots=True。

这样是可以一张图同时画出多列并列的数据饼图的集中展示,需要比较数据:

python 复制代码
df = pd.DataFrame(
    3 * np.random.rand(4, 2), index=["a", "b", "c", "d"], columns=["x", "y"]
)

df.plot.pie(subplots=True, figsize=(8, 4));

设定颜色与标注

默认会有颜色和标签,有时候,Boss不喜欢这样鲜艳的颜色,想换一下颜色呢?如何展示?

淡定!

一两招就搞定,通过设置 labels 和 colors参数就行,其他的包括数字精度,字体大小也一并搞定。

python 复制代码
series.plot.pie(
    labels=["AA", "BB", "CC", "DD"],
    colors=["r", "g", "b", "c"],
    autopct="%.2f",
    fontsize=20,
    figsize=(6, 6),
);

当然,你也要注意下,如果数值加起来不是1,它会重新调整,让你的加起来为1。

python 复制代码
series = pd.Series([0.1] * 4, index=["a", "b", "c", "d"], name="series2")

series.plot.pie(figsize=(6, 6));

以上代码只是一个简单示例,示例代码中的表达式可以根据实际问题进行修改。

后面介绍下其他的展示形式。

python 复制代码
df.plot.area     df.plot.barh     df.plot.density  df.plot.hist     df.plot.line 
df.plot.bar      df.plot.box      df.plot.hexbin   df.plot.kde      df.plot.pie
df.plot.scatter

觉得有用 收藏 收藏 收藏

点个赞 点个赞 点个赞

End

GPT专栏文章:

GPT实战系列-ChatGLM3本地部署CUDA11+1080Ti+显卡24G实战方案

GPT实战系列-LangChain + ChatGLM3构建天气查询助手

大模型查询工具助手之股票免费查询接口

GPT实战系列-简单聊聊LangChain

GPT实战系列-大模型为我所用之借用ChatGLM3构建查询助手

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(二)

GPT实战系列-P-Tuning本地化训练ChatGLM2等LLM模型,到底做了什么?(一)

GPT实战系列-ChatGLM2模型的微调训练参数解读

GPT实战系列-如何用自己数据微调ChatGLM2模型训练

GPT实战系列-ChatGLM2部署Ubuntu+Cuda11+显存24G实战方案

GPT实战系列-Baichuan2本地化部署实战方案

GPT实战系列-Baichuan2等大模型的计算精度与量化

GPT实战系列-GPT训练的Pretraining,SFT,Reward Modeling,RLHF

GPT实战系列-探究GPT等大模型的文本生成-CSDN博客

相关推荐
Ada大侦探2 小时前
新手小白学习Power BI第五弹--------产品分析以及产品毛利率报表、条件式标红、饼图、散点图
学习·数据分析·powerbi
慧都小妮子8 小时前
实时图形工具包GLG Toolkit:工业领域HMI数据可视化的优选产品
信息可视化·数据挖掘·数据分析
IT·小灰灰9 小时前
AI成为精确的执行导演:Runway Gen-4.5如何用控制美学重塑社媒视频工业
大数据·图像处理·人工智能·python·数据分析·音视频
田里的水稻1 天前
DT_digital_twin_ROS+Grazebo仿真
深度学习·数据挖掘·数据分析
我爱鸢尾花1 天前
第十四章聚类方法理论及Python实现
大数据·python·机器学习·数据挖掘·数据分析·聚类
Tiger Z1 天前
《R for Data Science (2e)》免费中文翻译 (第14章) --- Strings(2)
数据分析·r语言·数据科学·免费书籍
非著名架构师1 天前
“低空经济”的隐形护航者:AI驱动的秒级风场探测如何保障无人机物流与城市空管安全?
人工智能·数据分析·疾风气象大模型·高精度天气预报数据·galeweather.cn·高精度气象
洁洁!1 天前
openEuler在WSL2中的GPU加速AI训练实战指南
人工智能·数据挖掘·数据分析
非著名架构师1 天前
从“人找信息”到“信息找人”:气象服务模型如何主动推送风险,守护全域安全?
大数据·人工智能·安全·数据分析·高精度天气预报数据·galeweather.cn
clarance20151 天前
ChatBI王者之争:ThoughtSpot、Databricks、Power BI等五大产品深度对决与选型指南
大数据·人工智能·信息可视化·数据挖掘·数据分析