一、斑翠鸟优化算法
斑翠鸟优化算法(Pied Kingfisher Optimizer ,PKO),是由Abdelazim Hussien于2024年提出的一种基于群体的新型元启发式算法,它从自然界中观察到的斑翠鸟独特的狩猎行为和共生关系中汲取灵感。PKO 算法围绕三个不同的阶段构建:栖息/悬停猎物(探索/多样化)、潜水寻找猎物(开发/集约化)和培养共生关系。这些行为方面被转化为数学模型,能够有效地解决不同搜索空间中的各种优化挑战。
参考文献:
[1]Pied Kingfisher Optimizer: A new bio-inspired algorithm for solving numerical optimization and industrial engineering problems
二、23个函数介绍

参考文献:
[1] Yao X, Liu Y, Lin G M. Evolutionary programming made faster[J]. IEEE transactions on evolutionary computation, 1999, 3(2):82-102.
三、PKO求解23个函数
3.1部分代码
close all ;
clear
clc
Npop=30;
Function_name='F8'; % Name of the test function that can be from F1 to F23 (
Tmax=500;
[lb,ub,dim,fobj]=Get_Functions_details(Function_name);
[Best_fit,Best_pos,Convergence_curve]=PKO(Npop,Tmax,lb,ub,dim,fobj);
figure('Position',[100 100 660 290])
%Draw search space
subplot(1,2,1);
func_plot(Function_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Function_name,'( x_1 , x_2 )'])
%Draw objective space
subplot(1,2,2);
semilogy(Convergence_curve,'Color','r','linewidth',3)
title('Search space')
xlabel('Iteration');
ylabel('Best score obtained so far');
axis tight
grid on
box on
legend('PKO')
saveas(gca,[Function_name '.jpg']);
display(['The best solution is ', num2str(Best_pos)]);
display(['The best fitness value is ', num2str(Best_fit)]);
3.2部分结果







四、完整MATLAB代码
文件夹夹内包含该算法求解23个函数的完整MATLAB代码,点击main.m即可运行。
