批次大小对ES写入性能影响初探

问题背景

ES使用bulk写入时每批次的大小对性能有什么影响?设置每批次多大为好?

一般来说,在Elasticsearch中,使用bulk API进行批量写入时,每批次的大小对性能有着显著的影响。具体来说,当批量请求的大小增加时,写入性能通常会提高,因为减少了网络往返时间和磁盘I/O次数。然而,如果批量请求过大,会导致节点上的内存压力增大,进而影响其他请求的性能,甚至可能导致节点崩溃。

实测方案与结果

我在虚拟机环境实测了7种不同批次的大小,从500到10000都有。

结果如下表:

索引消耗的时间与批次大小数据图示:

  • 最慢的10000条每批,吞吐量是18078/秒。
  • 最快是8000条每批,吞吐量是18218/秒。

这图看着很唬人,实际上设定不同的批次大小对写入性能的影响微乎其微,图中所示的数据索引时间单位是毫秒。

表中,程序运行时间单位是秒,即便是观察程序运行总时间,也都是几秒之差。因为波动太小,因此不具有实际调优意义,只能作为一个数据参考。

当然,对于生产环境也可以通过实验来确定最佳的批量大小。可以从较小的批量开始(例如5MB),然后逐渐增加批量大小,观察写入性能的变化。当性能开始下降时,说明批量大小已经过大,应该减小批量大小。通常,一个好的起点是将每批次的数据量设置在5MB到15MB之间。

补充测试

那么将批次大小分别设置为10万,和10呢?取两个较为极端的值。

  • 超大的10万级别:运行了149秒,变慢的趋势有所抬头!
  • 很小10级别:**运行了641秒,明显变慢!果然,批次太小的确是浪费资源!**不过一般也没有开发人员会设置成这个值。

批次大小设置为极小值10的时候,数据反映了另外一个事实,那就是批量写入比单条写入快了不止一倍!

最终所有测试索引都有100万条数据,数据存储空间大小也几乎一致:

结论

经过计算,上述7种单批次大小的100万数据吞吐量差异最大只有千分之7,可以说是完全没有差异了,极端值才会显著降低性能。

相关推荐
Elasticsearch1 分钟前
Elasticsearch:智能搜索的 MCP
elasticsearch
cpsvps_net1 小时前
代理连接性能优化:提升网络效率的关键技术与实践
网络·性能优化
老马啸西风1 小时前
v0.29.1 敏感词性能优化之内部类+迭代器内部类
性能优化·开源·nlp·github·敏感词
前端世界1 小时前
HarmonyOS 数据处理性能优化:算法 + 异步 + 分布式实战
算法·性能优化·harmonyos
孤独的人2 小时前
WordPress 性能优化:从插件到 CDN 的全方位缓存设置指南
spring·缓存·性能优化
道一云黑板报2 小时前
Spark生态全景图:图计算与边缘计算的创新实践
大数据·性能优化·spark·边缘计算
子兮曰4 小时前
🚀95%的前端开发者都踩过坑:JavaScript循环全解析,从基础到高阶异步迭代
前端·javascript·性能优化
EndingCoder4 小时前
打包应用:使用 Electron Forge
前端·javascript·性能优化·electron·前端框架·打包·electron forge
谢尔登11 小时前
性能优化——首屏优化
性能优化
我真的是大笨蛋14 小时前
JVM调优总结
java·jvm·数据库·redis·缓存·性能优化·系统架构