算法修炼-动态规划之路径问题(1)

62. 不同路径 - 力扣(LeetCode)

思路:选定一个网格为终点,走到这个网格的所有走法就是这个网格的上面一个网格的所有走法加上这个网格左边一个网格的所有走法,然后做好初始化工作就行。

cpp 复制代码
class Solution {
public:
       int uniquePaths(int m, int n) 
    {
        //dp表
        int arr[m][n];

        //特殊处理
        if(m == 1 || n == 1)
        return 1;

        //初始化
        for(int i = 0; i<m; i++)
        {
            arr[i][0] = 1;
        }
        for(int i = 0; i<n; i++)
        {
            arr[0][i] = 1;
        }

        //状态转移方程
        for(int i = 1; i<m; i++)
        {
            for(int j = 1; j<n; j++)
            {
                arr[i][j] = arr[i][j-1] + arr[i-1][j];
            }
        }
        return arr[m-1][n-1];
    }
};

63. 不同路径 II - 力扣(LeetCode)

思路: 这道题可以看做事上面那道题的升级版,我的思路就是先将创建出来的dp表先全部初始化为0,在状态转移方程中,如果遇到障碍物,就保持dp表中障碍物位置的值仍为0,其余位置的值为它的上面加上它的左边。这时有人可能就会有疑问了,如果一个位置的左边或者是上面为障碍物不影响赋值吗?答案是不影响的。因为障碍物位置的值就是0,加上跟没加没有区别,所以可以统一加上。

cpp 复制代码
class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) 
    {   

        //dp表
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        vector<vector<int>> dp(m, vector<int>(n));

        //初始化
        for(int i = 0; i<n; i++)
        {
            if(obstacleGrid[0][i] == 0)
            dp[0][i] = 1;
            else
            break;
        }
        for(int i = 0; i<m; i++)
        {
            if(obstacleGrid[i][0] == 0)
            dp[i][0] = 1;
            else
            break;
        }
        

        //状态转移方程
        for(int i= 1; i<m; i++)
        {
            for(int j = 1; j<n; j++)
            {
                if(obstacleGrid[i][j] != 1)
                dp[i][j] = dp[i-1][j] + dp[i][j-1];
            }
        }

        return dp[m-1][n-1];

LCR 166. 珠宝的最高价值 - 力扣(LeetCode)

思路:这题采用的方法略微跟上面两题不同,这一题的dp表我多补了一行和一列,通过比较所在位置的上面一个位置和左边一个位置谁大,加上值大的那个位置,只不过这种方法要注意两个表之间下标的对应关系。

cpp 复制代码
class Solution {
public:
    int jewelleryValue(vector<vector<int>>& frame) 
    {
        //dp表
        int m = frame.size();
        int n = frame[0].size();
        vector<vector<int>> dp(m+1, vector<int>(n+1));

        //初始化+状态转移方程
        for(int i = 1; i<=m ;i++)
        {
            for(int j = 1; j<=n; j++)
            {
                if(dp[i-1][j] < dp[i][j-1])
                {
                    dp[i][j] += frame[i-1][j-1]+dp[i][j-1];
                }
                else
                {
                    dp[i][j] += frame[i-1][j-1] + dp[i-1][j];
                }
            }
        }

        return dp[m][n];
    }
};
相关推荐
Ldawn_AI2 小时前
4+ 图论高级算法
算法·深度优先·图论
Xの哲學2 小时前
Linux PCI 子系统:工作原理与实现机制深度分析
linux·网络·算法·架构·边缘计算
NuyoahC3 小时前
笔试——Day46
c++·算法·笔试
Keying,,,,4 小时前
力扣hot100 | 图论 | 200. 岛屿数量、994. 腐烂的橘子、207. 课程表、208. 实现 Trie (前缀树)
算法·leetcode·图论
cwplh5 小时前
Codeforces1043 A至F 题解
算法
楼田莉子5 小时前
C++算法学习专题:滑动窗口
开发语言·数据结构·c++·学习·算法·leetcode
2501_924731115 小时前
智慧矿山误报率↓83%!陌讯多模态融合算法在矿用设备监控的落地优化
人工智能·算法·目标检测·视觉检测
zh_xuan6 小时前
LeeCode 40.组合总和II
c语言·数据结构·算法
都叫我大帅哥7 小时前
动态规划:从懵逼到装逼,一篇让你彻底搞懂DP的终极指南
java·算法
艾莉丝努力练剑8 小时前
《递归与迭代:从斐波那契到汉诺塔的算法精髓》
c语言·学习·算法