深度学习中常见的backbone、neck、head的理解

在深度学习中,常见的backbone、neck和head是指网络结构的不同部分,它们各自承担着不同的功能:

  1. Backbone(骨干网络):骨干网络通常是指整个深度神经网络的主要部分,负责提取输入数据的特征。骨干网络通常由多个卷积层或其他特征提取层组成,用于逐渐提取输入数据的高级特征。在图像处理任务中,骨干网络通常用于提取图像的全局和局部特征,例如边缘、纹理和形状等。

  2. Neck(颈部):颈部位于骨干网络和头部之间,负责对骨干网络提取的特征进行进一步的处理和整合。颈部的作用类似于连接骨干网络和头部的桥梁,可以帮助将特征更好地传递给头部进行最终的预测或分类任务。颈部通常包括一些降维或池化层,以及一些特征融合或注意力机制,用于增强特征的表达能力。

  3. Head(头部):头部是整个网络结构的顶部部分,负责执行具体的任务,例如分类、目标检测或语义分割等。头部通常由全连接层或卷积层组成,用于将颈部提取的特征映射到最终的输出空间,生成网络的最终预测结果。在不同的任务中,头部的结构会有所不同,以适应不同的任务需求。

总的来说,backbone负责特征提取,neck负责特征整合,head负责具体任务的执行。这种模块化的设计使得深度学习网络在不同的任务和数据集上更具通用性和灵活性。

更加详细的内容请查看这位博主的博客:

https://zhuanlan.zhihu.com/p/607578342

相关推荐
Memene摸鱼日报18 分钟前
「Memene 摸鱼日报 2025.9.16」OpenAI 推出 GPT-5-Codex 编程模型,xAI 发布 Grok 4 Fast
人工智能·aigc
xiaohouzi11223321 分钟前
OpenCV的cv2.VideoCapture如何加GStreamer后端
人工智能·opencv·计算机视觉
用户1252055970823 分钟前
解决Stable Diffusion WebUI训练嵌入式模型报错问题
人工智能
Juchecar26 分钟前
一文讲清 nn.LayerNorm 层归一化
人工智能
martinzh26 分钟前
RAG系统大脑调教指南:模型选择、提示设计与质量控保一本通
人工智能
小关会打代码27 分钟前
计算机视觉案例分享之答题卡识别
人工智能·计算机视觉
Juchecar27 分钟前
一文讲清 nn.Linear 线性变换
人工智能
Se7en25844 分钟前
使用 NVIDIA Dynamo 部署 PD 分离推理服务
人工智能
隐语SecretFlow1 小时前
国人自研开源隐私计算框架SecretFlow,深度拆解框架及使用【开发者必看】
深度学习
海拥1 小时前
用 LazyLLM 搭建一个代码注释 / 文档 Agent 的实测体验
人工智能