数学建模【分类模型】

一、分类模型简介

本篇将介绍分类模型。对于二分类模型,我们将介绍逻辑回归(logistic regression)和Fisher线性判别分析两种分类算法;对于多分类模型,我们将简单介绍SPSS中的多分类线性判别分析和多分类逻辑回归。

分类模型,顾名思义将数据分类。如有一堆苹果和橙子,有它们的重量,大小,颜色等数据,将它们根据数据分为两类,之后如果给出数据,可以进行一定的判断,这个只有数据的是苹果还是橙子。

二、适用赛题

预测类

  • 由已知数据处理分类得到模型
  • 对后来的数据进行预测

三、模型流程

四、流程分析

本篇中的逻辑回归和Fisher线性判别不做证明,且逻辑回归和Fisher线性判别推荐使用SPSS软件进行操作

1.确定分类

分类模型有二分类和多分类两种,开始先得确定要分多少类。比如上面的苹果和橙子例子就是二分类;如果水果种类再多点,像苹果、橙子、柠檬和橘子,就是多分类问题。

2.二分类
①逻辑回归

对于因变量为分类变量的情况,我们可以使用逻辑回归进行处理。把y看成事件发生的概率,y ≥ 0.5表示发生;y < 0.5表示不发生。比如可以说y ≥ 0.5是苹果,y < 0.5是橙子。

线性概率模型(Linear Probability Model 简记LPM)

由于后者有解析表达式(而标准正态分布的cdf没有),所以计算logistic模型比probit模型更为方便。

②Fisher线性判别分析

LDA(Linear Discriminant Analysis)是一种经典的线性判别方法,又称Fisher判别分析。该方法思想比较简单:给定训练集样例,设法将样例投影到一维的直线上,使得同类样例的投影点尽可能接近和密集,异类投影点尽可能远离。

可借助SPSS软件直接得到结果。

3.多分类

多分类的操作和二分类类似,这里不再赘述。

4.合理性
如果预测结果较差怎么办?

可在Logistic回归模型中加入平方项、交互项等。

但在加入平方项之后,虽然预测能力提高了,但有可能会出现过拟合现象。

也就是对于样本数据的预测非常好,但是对于样本外的数据的预测效果可能会很差。

所以如何确定合适的模型?

把数据分为训练组和测试组,用训练组的数据来估计出模型,再用测试组的数据来进行测试。(训练组和测试组的比例一般设置为80%和20%)

注意:为了消除偶然性的影响,可以对上述步骤多重复几次,最终对每个模型求--个平均的准确率,这个步骤称为交叉验证。

5.预测

根据给出的数据,计算得到属于哪个类别的可能性最大。

相关推荐
Liue612312317 分钟前
YOLO11-C3k2-MBRConv3改进提升金属表面缺陷检测与分类性能_焊接裂纹气孔飞溅物焊接线识别
人工智能·分类·数据挖掘
Lun3866buzha2 小时前
农业害虫检测_YOLO11-C3k2-EMSC模型实现与分类识别_1
人工智能·分类·数据挖掘
三克的油4 小时前
数学建模-day5
数学建模
lichensun4 小时前
2026美赛A题智能手机电池耗电建模—思路全解析(含具体模型和代码)
数学建模·智能手机
酷酷的崽7981 天前
CANN 开源生态实战:端到端构建高效文本分类服务
分类·数据挖掘·开源
三克的油1 天前
数学建模-day4
数学建模
是小蟹呀^1 天前
从稀疏到自适应:人脸识别中稀疏表示的核心演进
人工智能·分类
AAD555888992 天前
YOLO11-EfficientRepBiPAN载重汽车轮胎热成像检测与分类_3
人工智能·分类·数据挖掘
fanstuck2 天前
从0到提交,如何用 ChatGPT 全流程参与建模比赛的
大数据·数学建模·语言模型·chatgpt·数据挖掘
小徐xxx2 天前
Softmax回归(分类问题)学习记录
深度学习·分类·回归·softmax·学习记录