数学建模【分类模型】

一、分类模型简介

本篇将介绍分类模型。对于二分类模型,我们将介绍逻辑回归(logistic regression)和Fisher线性判别分析两种分类算法;对于多分类模型,我们将简单介绍SPSS中的多分类线性判别分析和多分类逻辑回归。

分类模型,顾名思义将数据分类。如有一堆苹果和橙子,有它们的重量,大小,颜色等数据,将它们根据数据分为两类,之后如果给出数据,可以进行一定的判断,这个只有数据的是苹果还是橙子。

二、适用赛题

预测类

  • 由已知数据处理分类得到模型
  • 对后来的数据进行预测

三、模型流程

四、流程分析

本篇中的逻辑回归和Fisher线性判别不做证明,且逻辑回归和Fisher线性判别推荐使用SPSS软件进行操作

1.确定分类

分类模型有二分类和多分类两种,开始先得确定要分多少类。比如上面的苹果和橙子例子就是二分类;如果水果种类再多点,像苹果、橙子、柠檬和橘子,就是多分类问题。

2.二分类
①逻辑回归

对于因变量为分类变量的情况,我们可以使用逻辑回归进行处理。把y看成事件发生的概率,y ≥ 0.5表示发生;y < 0.5表示不发生。比如可以说y ≥ 0.5是苹果,y < 0.5是橙子。

线性概率模型(Linear Probability Model 简记LPM)

由于后者有解析表达式(而标准正态分布的cdf没有),所以计算logistic模型比probit模型更为方便。

②Fisher线性判别分析

LDA(Linear Discriminant Analysis)是一种经典的线性判别方法,又称Fisher判别分析。该方法思想比较简单:给定训练集样例,设法将样例投影到一维的直线上,使得同类样例的投影点尽可能接近和密集,异类投影点尽可能远离。

可借助SPSS软件直接得到结果。

3.多分类

多分类的操作和二分类类似,这里不再赘述。

4.合理性
如果预测结果较差怎么办?

可在Logistic回归模型中加入平方项、交互项等。

但在加入平方项之后,虽然预测能力提高了,但有可能会出现过拟合现象。

也就是对于样本数据的预测非常好,但是对于样本外的数据的预测效果可能会很差。

所以如何确定合适的模型?

把数据分为训练组和测试组,用训练组的数据来估计出模型,再用测试组的数据来进行测试。(训练组和测试组的比例一般设置为80%和20%)

注意:为了消除偶然性的影响,可以对上述步骤多重复几次,最终对每个模型求--个平均的准确率,这个步骤称为交叉验证。

5.预测

根据给出的数据,计算得到属于哪个类别的可能性最大。

相关推荐
2401_882727579 小时前
BY组态-低代码web可视化组件
前端·后端·物联网·低代码·数学建模·前端框架
smppbzyc13 小时前
2024亚太杯数学建模C题【Development Analyses and Strategies for Pet Industry 】思路详解
数学建模·数学建模竞赛·亚太杯·2024亚太杯数学建模·apmcm亚太杯·2024亚太地区数学建模竞赛·亚太杯c题
热心网友俣先生14 小时前
2024年亚太C题第二版本二问题1求解过程+代码运行以及问题2-4超详细思路分析
数学建模
小何数模14 小时前
24 年第十四届APMCM亚太数模竞赛浅析
数学建模
爱喝白开水a16 小时前
Sentence-BERT实现文本匹配【分类目标函数】
人工智能·深度学习·机器学习·自然语言处理·分类·bert·大模型微调
川川菜鸟17 小时前
2024年亚太地区数学建模C题完整思路
数学建模
2023数学建模国赛比赛资料分享17 小时前
2024亚太杯国际赛C题宠物预测1234问完整解题思路代码+成品参考文章
人工智能·数学建模·宠物·2024亚太杯国际赛数学建模·2024亚太杯国际赛a题·2024亚太杯国际赛数模abc·2024亚太杯数学建模
曼城周杰伦1 天前
表格不同类型的数据如何向量化?
人工智能·机器学习·分类·数据挖掘·sklearn·word2vec
菜鸟小码农的博客1 天前
昇思MindSpore第四课---GPT实现情感分类
gpt·分类·数据挖掘
CopyLower2 天前
AI 赋能电商的未来:购物推荐、会员分类与智能定价的创新实践
人工智能·分类·数据挖掘