用python混合检索 + 重排序改善

在混合检索中,结合文本和图像等多媒体数据,我们可能需要对检索结果进行重排序以改善用户体验。重排序可以根据不同的指标来优化结果,比如相关性、用户偏好、图像质量等。

以下是一个使用Python和Elasticsearch进行混合检索并结合重排序的简单示例。我们将使用Elasticsearch的function score查询来根据自定义的评分函数对结果进行重排序。

首先,确保你已经安装了elasticsearchelasticsearch-dsl库:

复制代码

bash复制代码

|---|---------------------------------|
| | pip install elasticsearch |
| | pip install elasticsearch-dsl |

然后,我们将创建一个Elasticsearch索引并索引一些包含文本和图像信息的文档。

复制代码

python复制代码

|---|------------------------------------------------------------------------|
| | from elasticsearch import Elasticsearch |
| | from elasticsearch_dsl import Document, Text, Keyword, Image, Float |
| | |
| | # 连接到Elasticsearch实例 |
| | es = Elasticsearch([{'host': 'localhost', 'port': 9200}]) |
| | |
| | # 定义一个Document,包含文本、图像和评分字段 |
| | class MultimediaDocument(Document): |
| | title = Text(fields={'raw': Keyword()}) |
| | image_url = Image() |
| | relevance_score = Float() # 用于存储重排序的评分 |
| | |
| | class Index: |
| | name = 'multimedia' |
| | settings = { |
| | 'number_of_shards': 1, |
| | 'number_of_replicas': 0 |
| | } |
| | |
| | # 索引一些文档 |
| | doc1 = MultimediaDocument( |
| | title="A beautiful sunset", |
| | image_url="https://example.com/sunset.jpg", |
| | relevance_score=2.0 # 假设这个文档的评分较高 |
| | ) |
| | doc2 = MultimediaDocument( |
| | title="A cat playing with a ball", |
| | image_url="https://example.com/cat.jpg", |
| | relevance_score=1.0 # 假设这个文档的评分较低 |
| | ) |
| | doc3 = MultimediaDocument( |
| | title="A delicious pizza", |
| | image_url="https://example.com/pizza.jpg", |
| | relevance_score=1.5 # 中等评分 |
| | ) |
| | |
| | doc1.save() |
| | doc2.save() |
| | doc3.save() |

现在,我们可以编写一个混合检索函数,该函数接受文本查询和图像URL作为输入,并使用function score查询进行重排序。

复制代码

python复制代码

|---|-----------------------------------------------------------------------------|
| | from elasticsearch_dsl.query import Q, FunctionScore |
| | |
| | def mixed_search_with_rescoring(text_query, image_query): |
| | # 构建基础查询 |
| | base_query = Q('bool', should=[ |
| | Q('match', title=text_query), |
| | Q('exists', field='image_url') |
| | ]) |
| | |
| | # 构建function score查询,根据relevance_score字段进行重排序 |
| | function_score_query = FunctionScore( |
| | query=base_query, |
| | functions=[ |
| | { |
| | "filter": { |
| | "term": { |
| | "image_url": image_query |
| | } |
| | }, |
| | "weight": 2 # 对于匹配的图像URL,增加权重 |
| | }, |
| | { |
| | "gauss": { |
| | "relevance_score": { |
| | "origin": "1.0", |
| | "scale": "0.5" # 根据relevance_score字段进行高斯分布评分 |
| | } |
| | } |
| | } |
| | ], |
| | score_mode="sum", # 评分模式为求和 |
| | boost_mode="sum" # 提升模式为求和 |
| | ) |
| | |
| | # 执行查询并返回结果 |
| | results = MultimediaDocument.search(query=function_score_query, size=10) |
| | return results |
| | |
| | # 示例搜索 |
| | text_query = "sunset" |
| | image_query = "https://example.com/sunset.jpg" |
| | results = mixed_search_with_rescoring(text_query, image_query) |
| | |
| | # 打印结果 |
| | for result in results: |
| | print(f"Title: {result.title}") |
| | print(f"Image URL: {result.image_url}") |
| | print(f"Relevance Score: {result.relevance_score}") |
| | print() |

在这个示例中,我们使用了一个简单的function score查询,该查询首先检查图像URL是否匹配查询参数,如果匹配,则增加权重。然后,它使用高斯函数对relevance_score字段进行评分,使得评分较高的文档在结果中排名更靠前。

请注意,这个示例假设你已经有了一个relevance_score字段来存储每个文档的评分。在实际应用中,你可能需要一个更复杂的评分机制,比如基于机器学习模型的预测分数,或者基于用户反馈的动态调整。

相关推荐
未来之窗软件服务19 分钟前
幽冥大陆(二)RDIFSDK 接口文档:布草洗涤厂高效运营的技术桥梁C#—东方仙盟
开发语言·c#·rdif·仙盟创梦ide·东方仙盟
小冯记录编程35 分钟前
C++指针陷阱:高效背后的致命危险
开发语言·c++·visual studio
学生信的大叔39 分钟前
【Python自动化】Ubuntu24.04配置Selenium并测试
python·selenium·自动化
1uther1 小时前
Unity核心概念⑨:Screen
开发语言·游戏·unity·c#·游戏引擎
C_Liu_1 小时前
C++:类和对象(下)
开发语言·c++
coderxiaohan1 小时前
【C++】类和对象1
java·开发语言·c++
诗句藏于尽头2 小时前
Django模型与数据库表映射的两种方式
数据库·python·django
阿幸软件杂货间2 小时前
Office转PDF转换器v1.0.py
开发语言·pdf·c#
智数研析社2 小时前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
全栈工程师修炼指南2 小时前
告别手动构建!Jenkins 与 Gitlab 完美协作,根据参数自动化触发CI/CD流水线实践
运维·ci/cd·自动化·gitlab·jenkins