LLM春招准备(1)

llm排序

GPT4V

GPT-4V可以很好地理解直接绘制在图像上的视觉指示。它可以直接识别叠加在图像上的不同类型的视觉标记作为指针,例如圆形、方框和手绘(见下图)。虽然GPT-4V能够直接理解坐标,但相比于仅文本坐标,GPT-4V在有视觉指示帮助下能够更可靠地执行任务。


位置编码

相对位置编码

手写

手写softmax,

python 复制代码
def softmax(x):
    exp_x = np.exp(x - np.max(x, axis=-1, keepdims=True))
    sm = exp_x/np.sum(exp_x, axis=-1, keepdims=True)
    return sm

手写crossentropy

python 复制代码
def cross_entropy(predictions, targets, epsilon=1e-12):
    predictions = np.clip(predictions, epsilon, 1.-epsilon)
    N = predictions.shape[0]
    ce = - np.sum(targets*np.log(predictions)) / N
    return ce

手写attention

python 复制代码
def saled_dot_product_attention(Q,K,V):
	dk = K.shape[-1]
	scores = np.dot(Q,K.T)/np.sqrt(dk)
	weights = softmax(scores)
	output = np.dot(weight,V)
	return weight, output

标签平滑label smoothing

标签平滑其实就是将硬标签(hard label)转化为软标签(soft label),也就是将标签的one hot编码中的1转化为比1稍小的数,将0转化为比0稍大的数,这样在计算损失函数时(比如交叉熵损失函数),损失函数会把原来值为0的标签也考虑进来,其实就相当于在标签的one hot编码中的每一维上增加了噪声。本质上是向训练集中增加了信息,使得训练集的信息量增大了,更加接近真实分布的数据集的信息量,所以有利于缓解过拟合

解决Transformer处理长序列

稀疏注意力

和Linformer,Longformer类似,Sparse Attention也是为了解决Transformer模型随着长度的增加,Attention部分所占用的内存和计算呈平方比增加的问题。

相关推荐
掘金安东尼1 小时前
字节-Trae、阿里-通义灵码、腾讯-CodeBuddy,为什么都在“卷”AI编码?
面试·llm·github
土豆12506 小时前
告别“专属”编辑器:为什么 GitHub Copilot 是比 Cursor 更优的 AI 编程选择
llm·cursor·github copilot
知其然亦知其所以然6 小时前
RAG 结果太水?用 RRF + Reranker 重排,效果翻倍提升!
java·后端·llm
磊叔的技术博客6 小时前
Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成
spring·llm·openai
憨憨睡不醒啊21 小时前
如何让LLM智能体开发助力求职之路——构建属于你的智能体开发知识体系📚📚📚
面试·程序员·llm
柯南二号1 天前
深入理解 Agent 与 LLM 的区别:从智能体到语言模型
人工智能·机器学习·llm·agent
Q同学1 天前
TORL:工具集成强化学习,让大语言模型学会用代码解题
深度学习·神经网络·llm
人肉推土机1 天前
AI Agent 架构设计:ReAct 与 Self-Ask 模式对比与分析
人工智能·大模型·llm·agent
洗澡水加冰1 天前
n8n搭建多阶段交互式工作流
后端·llm
中杯可乐多加冰1 天前
【解决方案-RAGFlow】RAGFlow显示Task is queued、 Microsoft Visual C++ 14.0 or greater is required.
人工智能·大模型·llm·rag·ragflow·deepseek