LLM春招准备(1)

llm排序

GPT4V

GPT-4V可以很好地理解直接绘制在图像上的视觉指示。它可以直接识别叠加在图像上的不同类型的视觉标记作为指针,例如圆形、方框和手绘(见下图)。虽然GPT-4V能够直接理解坐标,但相比于仅文本坐标,GPT-4V在有视觉指示帮助下能够更可靠地执行任务。


位置编码

相对位置编码

手写

手写softmax,

python 复制代码
def softmax(x):
    exp_x = np.exp(x - np.max(x, axis=-1, keepdims=True))
    sm = exp_x/np.sum(exp_x, axis=-1, keepdims=True)
    return sm

手写crossentropy

python 复制代码
def cross_entropy(predictions, targets, epsilon=1e-12):
    predictions = np.clip(predictions, epsilon, 1.-epsilon)
    N = predictions.shape[0]
    ce = - np.sum(targets*np.log(predictions)) / N
    return ce

手写attention

python 复制代码
def saled_dot_product_attention(Q,K,V):
	dk = K.shape[-1]
	scores = np.dot(Q,K.T)/np.sqrt(dk)
	weights = softmax(scores)
	output = np.dot(weight,V)
	return weight, output

标签平滑label smoothing

标签平滑其实就是将硬标签(hard label)转化为软标签(soft label),也就是将标签的one hot编码中的1转化为比1稍小的数,将0转化为比0稍大的数,这样在计算损失函数时(比如交叉熵损失函数),损失函数会把原来值为0的标签也考虑进来,其实就相当于在标签的one hot编码中的每一维上增加了噪声。本质上是向训练集中增加了信息,使得训练集的信息量增大了,更加接近真实分布的数据集的信息量,所以有利于缓解过拟合

解决Transformer处理长序列

稀疏注意力

和Linformer,Longformer类似,Sparse Attention也是为了解决Transformer模型随着长度的增加,Attention部分所占用的内存和计算呈平方比增加的问题。

相关推荐
Tadas-Gao1 小时前
缸中之脑:大模型架构的智能幻象与演进困局
人工智能·深度学习·机器学习·架构·大模型·llm
数据智能老司机6 小时前
用于构建多智能体系统的智能体架构模式——可解释性与合规性的智能体模式
人工智能·llm·agent
数据智能老司机6 小时前
用于构建多智能体系统的智能体架构模式——人类—智能体交互模式
人工智能·llm·agent
数据智能老司机6 小时前
用于构建多智能体系统的智能体架构模式——高级适配:打造具备学习能力的智能体
人工智能·llm·agent
数据智能老司机6 小时前
用于构建多智能体系统的智能体架构模式——智能体式AI架构:组件与交互
人工智能·llm·agent
数据智能老司机6 小时前
用于构建多智能体系统的智能体架构模式——多智能体协调模式
人工智能·llm·agent
在未来等你6 小时前
AI Agent Skill Day 1:Agent Skill概述:技能系统的核心架构与设计理念
llm·ai agent·skill·技能开发·function calling·tool use
CoderJia程序员甲6 小时前
GitHub 热榜项目 - 日榜(2026-02-08)
git·ai·开源·llm·github
Tadas-Gao7 小时前
深度学习与机器学习的知识路径:从必要基石到独立范式
人工智能·深度学习·机器学习·架构·大模型·llm