掌握pandas cut函数,一键实现数据分类

pandas中的cut函数可将一维数据按照给定的区间进行分组,并为每个值分配对应的标签。

其主要功能是将连续的数值数据转化为离散的分组数据,方便进行分析和统计。

1. 数据准备

下面的示例中使用的数据采集自王者荣耀比赛的统计数据。

数据下载地址:https://databook.top/

导入数据:

python 复制代码
# 2023年世冠比赛选手的数据
fp = r"D:\data\player-2023世冠.csv"

df = pd.read_csv(fp)

# 这里只保留了下面示例中需要的列
df = df.loc[:, ["排名", "选手", "场均经济", "场均伤害"]]
df

2. 使用示例

每个选手的**"场均经济"** 和**"场均伤害"** 是连续分布的数据,为了整体了解所有选手的情况,

可以使用下面的方法将**"场均经济"** 和**"场均伤害"**分类。

2.1. 查看数据分布

首先,可以使用直方图的方式看看数据连续分布的情况:

python 复制代码
import matplotlib.pyplot as plt

df.loc[:, ["场均经济", "场均伤害"]].hist()
plt.show()

图中的横轴 是"经济"和"伤害"的数值,纵轴是选手的数量。

2.2. 定制分布参数

从默认的直方图中可以看出大部分选手的**"场均经济"** 和**"场均伤害"** 大致在什么范围,

不过,为了更精细的分析,我们可以进一步定义自己的分类范围,看看各个分类范围内的选手数量情况。

比如,我们将**"场均经济"** 分为3块,分别为0~5000),5000~10000),10000~20000)。

同样,对于**"场均伤害"** ,也分为3块,分别为0~50000),50000~100000),100000~200000)。

python 复制代码
bins1 = [0, 5000, 10000, 20000]
bins2 = [0, 50000, 100000, 200000]

labels = ["低", "中", "高"]
s1 = "场均经济"
s2 = "场均伤害"
df[f"{s1}-分类"] = pd.cut(df[s1], bins=bins1, labels=labels)
df[f"{s2}-分类"] = pd.cut(df[s2], bins=bins2, labels=labels)

df

分类之后,选手被分到3个类别之中,然后再绘制直方图。

python 复制代码
df.loc[:, f"{s1}-分类"].hist()
plt.title(f"{s1}-分类")
plt.show()

从这个图看出,大部分选手都是**"中"** ,**"高"**的经济,说明职业选手很重视英雄发育。

python 复制代码
df.loc[:, f"{s2}-分类"].hist()
plt.title(f"{s2}-分类")
plt.show()

从图中可以看出,打出高伤害的选手比例并不高,可能职业比赛中,更多的是团队作战。

3. 总结

总的来说,cut函数的主要作用是将输入的数值数据(可以是一维数组、Series或DataFrame的列)按照指定的间隔或自定义的区间边界进行划分 ,并为每个划分后的区间分配一个标签

这样,原始的连续数据就被转化为了离散的分组数据,每个数据点都被分配到了一个特定的组中,从而方便后续进行分析和统计。

相关推荐
冷雨夜中漫步3 小时前
Python快速入门(6)——for/if/while语句
开发语言·经验分享·笔记·python
郝学胜-神的一滴3 小时前
深入解析Python字典的继承关系:从abc模块看设计之美
网络·数据结构·python·程序人生
百锦再3 小时前
Reactive编程入门:Project Reactor 深度指南
前端·javascript·python·react.js·django·前端框架·reactjs
喵手5 小时前
Python爬虫实战:旅游数据采集实战 - 携程&去哪儿酒店机票价格监控完整方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集结果csv导出·旅游数据采集·携程/去哪儿酒店机票价格监控
2501_944934735 小时前
高职大数据技术专业,CDA和Python认证优先考哪个?
大数据·开发语言·python
helloworldandy5 小时前
使用Pandas进行数据分析:从数据清洗到可视化
jvm·数据库·python
肖永威6 小时前
macOS环境安装/卸载python实践笔记
笔记·python·macos
TechWJ7 小时前
PyPTO编程范式深度解读:让NPU开发像写Python一样简单
开发语言·python·cann·pypto
枷锁—sha7 小时前
【SRC】SQL注入WAF 绕过应对策略(二)
网络·数据库·python·sql·安全·网络安全
abluckyboy7 小时前
Java 实现求 n 的 n^n 次方的最后一位数字
java·python·算法