掌握pandas cut函数,一键实现数据分类

pandas中的cut函数可将一维数据按照给定的区间进行分组,并为每个值分配对应的标签。

其主要功能是将连续的数值数据转化为离散的分组数据,方便进行分析和统计。

1. 数据准备

下面的示例中使用的数据采集自王者荣耀比赛的统计数据。

数据下载地址:https://databook.top/

导入数据:

python 复制代码
# 2023年世冠比赛选手的数据
fp = r"D:\data\player-2023世冠.csv"

df = pd.read_csv(fp)

# 这里只保留了下面示例中需要的列
df = df.loc[:, ["排名", "选手", "场均经济", "场均伤害"]]
df

2. 使用示例

每个选手的**"场均经济"** 和**"场均伤害"** 是连续分布的数据,为了整体了解所有选手的情况,

可以使用下面的方法将**"场均经济"** 和**"场均伤害"**分类。

2.1. 查看数据分布

首先,可以使用直方图的方式看看数据连续分布的情况:

python 复制代码
import matplotlib.pyplot as plt

df.loc[:, ["场均经济", "场均伤害"]].hist()
plt.show()

图中的横轴 是"经济"和"伤害"的数值,纵轴是选手的数量。

2.2. 定制分布参数

从默认的直方图中可以看出大部分选手的**"场均经济"** 和**"场均伤害"** 大致在什么范围,

不过,为了更精细的分析,我们可以进一步定义自己的分类范围,看看各个分类范围内的选手数量情况。

比如,我们将**"场均经济"** 分为3块,分别为0~5000),5000~10000),10000~20000)。

同样,对于**"场均伤害"** ,也分为3块,分别为0~50000),50000~100000),100000~200000)。

python 复制代码
bins1 = [0, 5000, 10000, 20000]
bins2 = [0, 50000, 100000, 200000]

labels = ["低", "中", "高"]
s1 = "场均经济"
s2 = "场均伤害"
df[f"{s1}-分类"] = pd.cut(df[s1], bins=bins1, labels=labels)
df[f"{s2}-分类"] = pd.cut(df[s2], bins=bins2, labels=labels)

df

分类之后,选手被分到3个类别之中,然后再绘制直方图。

python 复制代码
df.loc[:, f"{s1}-分类"].hist()
plt.title(f"{s1}-分类")
plt.show()

从这个图看出,大部分选手都是**"中"** ,**"高"**的经济,说明职业选手很重视英雄发育。

python 复制代码
df.loc[:, f"{s2}-分类"].hist()
plt.title(f"{s2}-分类")
plt.show()

从图中可以看出,打出高伤害的选手比例并不高,可能职业比赛中,更多的是团队作战。

3. 总结

总的来说,cut函数的主要作用是将输入的数值数据(可以是一维数组、Series或DataFrame的列)按照指定的间隔或自定义的区间边界进行划分 ,并为每个划分后的区间分配一个标签

这样,原始的连续数据就被转化为了离散的分组数据,每个数据点都被分配到了一个特定的组中,从而方便后续进行分析和统计。

相关推荐
子夜江寒17 分钟前
Python 学习-Day8-执行其他应用程序
python·学习
背心2块钱包邮24 分钟前
第7节——积分技巧(Integration Techniques)-代换积分法
人工智能·python·深度学习·matplotlib
一个散步者的梦1 小时前
一键生成数据分析报告:Python的ydata-profiling模块(汉化)
python·数据挖掘·数据分析
黑客思维者1 小时前
Python大规模数据处理OOM突围:从迭代器原理到TB级文件实战优化
开发语言·python·github·迭代器·oom
weixin_421133412 小时前
应用日志监控
python
CHANG_THE_WORLD3 小时前
Python 学习三 Python字符串拼接详解
开发语言·python·学习
测试老哥3 小时前
Postman接口测试基本操作
自动化测试·软件测试·python·测试工具·测试用例·接口测试·postman
winfredzhang3 小时前
基于wxPython的TodoList任务管理器开发详解
python·wxpython·todolist·持久
釉色清风3 小时前
在openEuler玩转Python
linux·开发语言·python
Blossom.1183 小时前
基于多智能体强化学习的云资源调度系统:如何用MARL把ECS成本打下来60%
人工智能·python·学习·决策树·机器学习·stable diffusion·音视频