利用Python爬取高德地图全国地铁站点信息

利用Python中的requests库进行地铁站点信息的获取,同时将数据保存在本机excel中

python 复制代码
# 首先引入所需要的包
import requests
from bs4 import BeautifulSoup
import pandas as pd
import json



# 发送 GET 请求获取网页内容
url = 'http://map.amap.com/subway/index.html'
response = requests.get(url)
# 第一步:爬取两个 div 中的城市数据(包括 ID 和拼音),生成城市集合
if response.status_code == 200:
    # 解码
    response_content = response.content.decode('utf-8')
    # 使用 Beautiful Soup 解析网页内容
    soup = BeautifulSoup(response_content, 'html.parser')
    # 从这里开始,你可以使用 Beautiful Soup 对象(soup)来提取所需的信息
    # 例如,查找标题
    title = soup.title
    # 通过Beautiful Soup来找到城市信息元素,并提取这个元素的信息
    for soup_a in soup.find('div', class_='city-list fl').find_all('a'):
        city_name_py = soup_a['cityname']
        city_id = soup_a['id']
        city_name_ch = soup_a.get_text()
        city_info_list.append({'name_py': city_name_py, 'id': city_id, 'name_ch': city_name_ch})
        # 获取未显示出来的城市列表
    for soup_a in soup.find('div', class_='more-city-list').find_all('a'):
        city_name_py = soup_a['cityname']
        city_id = soup_a['id']
        city_name_ch = soup_a.get_text()
        city_info_list.append({'name_py': city_name_py, 'id': city_id, 'name_ch': city_name_ch})
        print(city_info_list)
else:
    print("无法获取网页内容")

for city_info in city_info_list:
    city_id = city_info.get("id")
    city_name = city_info.get("name_py")
    city_name_ch = city_info.get("name_ch")
    print("开始爬取城市" + city_name_ch + "的数据")
    city_lines_list = []
    # 第二步:遍历城市集合,构造每一个城市的 url,并下载数据
    # 构造每个城市的url
    url = "http://map.amap.com/service/subway?_1717380520536&srhdata=" + city_id + '_drw_' + city_name + '.json'
    res = requests.get(url)
    content = res.content.decode('utf-8')
    # 将内容字符串转换成json对象
    content_json = json.loads(content)
    # 提取该城市的所有地铁线list
    line_info_list = content_json.get("l")
    # 第三步:开始处理每一个地铁线,提取内容到dataframe中
    for line_info in line_info_list:
        # 地铁线名字
        line_name = line_info["kn"]
        # 处理地铁线站点
        df_per_zd = pd.DataFrame(line_info["st"])
        df_per_zd = df_per_zd[['n', 'sl', 'poiid', 'sp', 't', 'su', 'sid']]
        df_per_zd['gd经度'] = df_per_zd['sl'].apply(lambda x: x.split(',')[0])
        df_per_zd['gd纬度'] = df_per_zd['sl'].apply(lambda x: x.split(',')[1])
        df_per_zd.drop('sl', axis=1, inplace=True)
        df_per_zd['路线名称'] = line_info['ln']
        df_per_zd['城市名称'] = city_name_ch
        df_per_zd.rename(columns={"n": "站点名称", "poiid": "POI编号", "sp": "拼音名称", "t": "换乘标志 1:换乘,0:不可换乘", "su": "su", "sid": "sid编号"}, inplace=True)
        # 先将这条地铁线处理过的dataframe存起来,我们后面给他放到一张表里
        city_lines_list.append(df_per_zd)
    # 这段代码就是将地铁线数据列表聚合到一张表里,形成每个城市的地铁站数据
    city_subway_data = pd.concat(city_lines_list, ignore_index=True)
    # 第四步:将处理好的文件保存为xlsx
    city_subway_data.to_excel(city_name_ch + '.xlsx', sheet_name='Sheet1')
相关推荐
是十一月末6 分钟前
Opencv实现图像的腐蚀、膨胀及开、闭运算
人工智能·python·opencv·计算机视觉
IT女孩儿7 分钟前
JavaScript--WebAPI查缺补漏(二)
开发语言·前端·javascript·html·ecmascript
醒了就刷牙13 分钟前
黑马Java面试教程_P9_MySQL
java·mysql·面试
云空13 分钟前
《探索PyTorch计算机视觉:原理、应用与实践》
人工智能·pytorch·python·深度学习·计算机视觉
m0_7482336419 分钟前
SQL数组常用函数记录(Map篇)
java·数据库·sql
dowhileprogramming24 分钟前
Python 中的迭代器
linux·数据库·python
编程爱好者熊浪1 小时前
JAVA HTTP压缩数据
java
吴冰_hogan1 小时前
JVM(Java虚拟机)的组成部分详解
java·开发语言·jvm
0zxm1 小时前
08 Django - Django媒体文件&静态文件&文件上传
数据库·后端·python·django·sqlite
m0_748256562 小时前
如何解决前端发送数据到后端为空的问题
前端