线性代数笔记10--矩阵的四个基本子空间

0. 引入

矩阵
A m × n A_{m \times n} Am×n

1. 列空间

C ( A ) C(A) C(A)在 R m R^m Rm中

d i m ( C ( A ) ) = p i v o t _ c o l u m n _ c n t = r a n k ( A ) = r dim(C(A))=pivot\_column\_cnt = rank(A)=r dim(C(A))=pivot_column_cnt=rank(A)=r

2. 零空间

N ( A ) N(A) N(A)在 R n R^{n} Rn中

d i m ( N ( A ) ) = f r e e d o m _ c o l u m n _ c n t = n − r dim(N(A))=freedom\_column\_cnt=n-r dim(N(A))=freedom_column_cnt=n−r

3. 行空间

C ( A ⊤ ) C(A ^{\top}) C(A⊤)在 R n R^{n} Rn中

d i m ( C ( A ⊤ ) ) = r dim(C(A^{\top}))=r dim(C(A⊤))=r

3.1 求解行空间的基

A = [ 1 2 3 1 1 1 2 1 1 2 3 1 ] A= \begin{bmatrix} 1 & 2 & 3 & 1\\ 1 & 1 & 2 & 1\\ 1 & 2 & 3 & 1\\ \end{bmatrix} A= 111212323111

化为行最简形,都是做行变化不影响行空间。
A ⟶ R = r r e f ( A ) = [ 1 0 1 1 0 1 1 0 0 0 0 0 ] A\longrightarrow R=rref(A)= \begin{bmatrix} 1 & 0 & 1 & 1\\ 0 & 1 & 1 & 0\\ 0 & 0 & 0 & 0\\ \end{bmatrix} A⟶R=rref(A)= 100010110100

C ( R ) ≠ C ( A ) C(R) \ne C(A) C(R)=C(A)

行空间的基就是前 r r r行。

4. 左零空间

N ( A ⊤ ) N(A^{\top}) N(A⊤)在 R m R^m Rm中

d i m ( N ( A ⊤ ) ) = m − r dim(N(A^{\top}))=m-r dim(N(A⊤))=m−r

左零空间
( A ⊤ ) y = 0 y ⊤ A = 0 ⊤ (A^{\top})y=0\\ y^{\top}A=0^{\top}\\ (A⊤)y=0y⊤A=0⊤

4.1 左零空间基的求法

与高斯若尔当方法一样。
A ′ = A ⊤ A'=A^{\top} A′=A⊤

在原矩阵后添加一个新矩阵

A n × m ′ I m × m \] \[A'_{n \\times m}I_{m \\times m}\] \[An×m′Im×m

将 A n × m A_{n \times m} An×m通过行变换为行最简形。

A n × m ′ I m × m \] ⟶ \[ R n × m E m × m \] \[A'_{n \\times m}I_{m \\times m}\]\\longrightarrow \[R_{n \\times m}E_{m\\times m}\] \[An×m′Im×m\]⟶\[Rn×mEm×m

此时作用在 A A A上的所有行变换就转成了 E E E。
E A ′ = I EA'=I EA′=I

r = r a n k ( A ) r=rank(A) r=rank(A)
E E E中的最后 m − r m-r m−r列构成 A A A左零空间的基。

举例
A = [ 1 2 3 1 1 1 2 1 1 2 3 1 ] ⟶ R = [ 1 0 1 1 0 1 1 0 0 0 0 0 ] E A = R E = [ − 1 2 0 1 − 1 0 − 1 0 1 ] A= \begin{bmatrix} 1 & 2 & 3 & 1\\ 1 & 1 & 2 & 1\\ 1 & 2 & 3 & 1\\ \end{bmatrix} \longrightarrow R= \begin{bmatrix} 1 & 0 & 1 & 1\\ 0 & 1 & 1 & 0\\ 0 & 0 & 0 & 0\\ \end{bmatrix}\\ EA=R\\ E= \begin{bmatrix} -1 & 2 & 0\\ 1 & -1 & 0\\ -1 & 0 & 1\\ \end{bmatrix} A= 111212323111 ⟶R= 100010110100 EA=RE= −11−12−10001

A A A的左零空间为
c [ − 1 0 1 ] c \begin{bmatrix} -1\\0\\1 \end{bmatrix} c −101

相关推荐
一只侯子20 小时前
Face AE Tuning
图像处理·笔记·学习·算法·计算机视觉
whale fall1 天前
【剑雅14】笔记
笔记
ChoSeitaku1 天前
线代强化NO20|矩阵的相似与相似对角化|综合运用
线性代数·机器学习·矩阵
西西弗Sisyphus1 天前
矩阵的左乘和右乘有什么区别
线性代数·矩阵
西西弗Sisyphus1 天前
满秩分解是怎么把矩阵分解成了两个满秩的矩阵
线性代数·矩阵·初等矩阵·满秩分解
AI科技星1 天前
为什么宇宙无限大?
开发语言·数据结构·经验分享·线性代数·算法
星空的资源小屋1 天前
跨平台下载神器ArrowDL,一网打尽所有资源
javascript·笔记·django
Xudde.1 天前
Quick2靶机渗透
笔记·学习·安全·web安全·php
AA陈超1 天前
Git常用命令大全及使用指南
笔记·git·学习
愚戏师1 天前
Python3 Socket 网络编程复习笔记
网络·笔记