民航生成式语言模型的预训练、对齐训练和人类反馈强化学习(RLHF)阶段

在民航生成式语言模型的预训练、对齐训练和人类反馈强化学习(RLHF)阶段,都需要精心准备和选择数据集。下面是每个阶段可能需要的数据集和一般的要求:

预训练阶段

数据集:

  • 通用语料库:如维基百科、Common Crawl、Gutenberg 电子书等。
  • 新闻文章:涵盖多个领域和主题的新闻报道。
  • 社交媒体文本:如推文、论坛帖子等,以学习非正式语言和流行语。
  • 对话数据:如对话语料库、聊天记录等,以学习对话模式。
  • 民航专业数据:包括航班信息、安全报告、操作手册、航空法规等。
    硬件要求:
  • 8张H100显卡进行fp16训练。
    训练时间:
  • 取决于模型大小、数据集大小、batch size等。可能需要数周至数月不等。

对齐训练阶段

数据集:

  • 领域特定的问答数据:针对民航领域的问题和答案对。
  • 文本分类数据:用于分类航班信息、安全事件等。
  • 文本生成数据:用于生成报告、摘要等。
    硬件要求:
  • 4张H100显卡进行fp16训练。
    训练时间:
  • 通常需要较短的训练时间,可能为数天至数周。

人类反馈强化学习(RLHF)阶段

数据集:

  • 人类提供的偏好数据:人类评估者对模型输出质量的评分。
  • 指令遵循数据:指令和对应的正确响应。
  • 人类编写的示例数据:用于指导模型生成高质量输出。
    数据集结构:
  • 标签化数据:每个数据点都有对应的标签或评分。
  • 对话式数据:包含指令和响应的对话数据。
  • 文本生成数据:包含输入和期望的生成文本。
    硬件要求:
  • RLHF通常需要较少的显卡,因为它涉及到迭代的策略改进,而不是大规模的数据训练。具体数量取决于模型大小和训练效率。
    训练时间:
  • RLHF阶段的时间可能相对较短,但需要多次迭代来优化模型。可能为数天至数周。
    请注意,上述时间估计非常粗略,实际训练时间会受到许多因素的影响,包括模型的复杂性、数据集的大小、训练的epoch数量、优化器的选择等。在实际操作中,您需要根据具体的实验结果来调整训练策略和时间安排。此外,由于模型训练是一个动态调整的过程,您可能需要根据模型的性能和资源情况灵活调整硬件配置。
相关推荐
格林威15 分钟前
传送带上运动模糊图像复原:提升动态成像清晰度的 6 个核心方案,附 OpenCV+Halcon 实战代码!
人工智能·opencv·机器学习·计算机视觉·ai·halcon·工业相机
且去填词25 分钟前
DeepSeek API 深度解析:从流式输出、Function Calling 到构建拥有“手脚”的 AI 应用
人工智能·python·语言模型·llm·agent·deepseek
九河云28 分钟前
从“被动适配”到“主动重构”:企业数字化转型的底层逻辑
大数据·人工智能·安全·重构·数字化转型
Java猿_32 分钟前
使用Three.js创建交互式3D地球模型
人工智能·语言模型·自然语言处理
FL1717131435 分钟前
excel转latex
人工智能
Aurora-Borealis.1 小时前
Day27 机器学习流水线
人工智能·机器学习
歌_顿1 小时前
知识蒸馏学习总结
人工智能·算法
老吴学AI1 小时前
系列报告九:(埃森哲)The New Rules of Platform Strategy in the Age of Agentic AI
人工智能
棒棒的皮皮1 小时前
【深度学习】YOLO模型速度优化Checklist
人工智能·深度学习·yolo·计算机视觉