民航生成式语言模型的预训练、对齐训练和人类反馈强化学习(RLHF)阶段

在民航生成式语言模型的预训练、对齐训练和人类反馈强化学习(RLHF)阶段,都需要精心准备和选择数据集。下面是每个阶段可能需要的数据集和一般的要求:

预训练阶段

数据集:

  • 通用语料库:如维基百科、Common Crawl、Gutenberg 电子书等。
  • 新闻文章:涵盖多个领域和主题的新闻报道。
  • 社交媒体文本:如推文、论坛帖子等,以学习非正式语言和流行语。
  • 对话数据:如对话语料库、聊天记录等,以学习对话模式。
  • 民航专业数据:包括航班信息、安全报告、操作手册、航空法规等。
    硬件要求:
  • 8张H100显卡进行fp16训练。
    训练时间:
  • 取决于模型大小、数据集大小、batch size等。可能需要数周至数月不等。

对齐训练阶段

数据集:

  • 领域特定的问答数据:针对民航领域的问题和答案对。
  • 文本分类数据:用于分类航班信息、安全事件等。
  • 文本生成数据:用于生成报告、摘要等。
    硬件要求:
  • 4张H100显卡进行fp16训练。
    训练时间:
  • 通常需要较短的训练时间,可能为数天至数周。

人类反馈强化学习(RLHF)阶段

数据集:

  • 人类提供的偏好数据:人类评估者对模型输出质量的评分。
  • 指令遵循数据:指令和对应的正确响应。
  • 人类编写的示例数据:用于指导模型生成高质量输出。
    数据集结构:
  • 标签化数据:每个数据点都有对应的标签或评分。
  • 对话式数据:包含指令和响应的对话数据。
  • 文本生成数据:包含输入和期望的生成文本。
    硬件要求:
  • RLHF通常需要较少的显卡,因为它涉及到迭代的策略改进,而不是大规模的数据训练。具体数量取决于模型大小和训练效率。
    训练时间:
  • RLHF阶段的时间可能相对较短,但需要多次迭代来优化模型。可能为数天至数周。
    请注意,上述时间估计非常粗略,实际训练时间会受到许多因素的影响,包括模型的复杂性、数据集的大小、训练的epoch数量、优化器的选择等。在实际操作中,您需要根据具体的实验结果来调整训练策略和时间安排。此外,由于模型训练是一个动态调整的过程,您可能需要根据模型的性能和资源情况灵活调整硬件配置。
相关推荐
浊酒南街几秒前
吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)4.9-4.10
人工智能·深度学习·神经网络·cnn
Tony聊跨境16 分钟前
独立站SEO类型及优化:来检查这些方面你有没有落下
网络·人工智能·tcp/ip·ip
懒惰才能让科技进步22 分钟前
从零学习大模型(十二)-----基于梯度的重要性剪枝(Gradient-based Pruning)
人工智能·深度学习·学习·算法·chatgpt·transformer·剪枝
Qspace丨轻空间33 分钟前
气膜场馆:推动体育文化旅游创新发展的关键力量—轻空间
大数据·人工智能·安全·生活·娱乐
没有不重的名么34 分钟前
门控循环单元GRU
人工智能·深度学习·gru
love_and_hope37 分钟前
Pytorch学习--神经网络--搭建小实战(手撕CIFAR 10 model structure)和 Sequential 的使用
人工智能·pytorch·python·深度学习·学习
Chef_Chen40 分钟前
从0开始学习机器学习--Day14--如何优化神经网络的代价函数
神经网络·学习·机器学习
2403_875736871 小时前
道品科技智慧农业中的自动气象检测站
网络·人工智能·智慧城市
学术头条1 小时前
AI 的「phone use」竟是这样练成的,清华、智谱团队发布 AutoGLM 技术报告
人工智能·科技·深度学习·语言模型
准橙考典1 小时前
怎么能更好的通过驾考呢?
人工智能·笔记·自动驾驶·汽车·学习方法