实际上,除了 Spring Web 外,Spring 还提供了很多其他好用的工具集,Spring Data 就是这样的存在。众所周知,基本上所有的项目都会用到数据库,所以 Spring 提供了对市场上主流数据库的贴心支持。
案例 1:注意读与取的一致性
当使用 Spring Data Redis 时,我们有时候会在项目升级的过程中,发现存储后的数据有读取不到的情况;另外,还会出现解析出错的情况。这里我们不妨直接写出一个错误案例来模拟下:
@SpringBootApplication
public class SpringdataApplication {
SpringdataApplication(RedisTemplate redisTemplate,
StringRedisTemplate stringRedisTemplate){
String key = "mykey";
stringRedisTemplate.opsForValue().set(key, "myvalue");
Object valueGotFromStringRedisTemplate = stringRedisTemplate.opsForValue().get(key);
System.out.println(valueGotFromStringRedisTemplate);
Object valueGotFromRedisTemplate = redisTemplate.opsForValue().get(key);
System.out.println(valueGotFromRedisTemplate);
}
public static void main(String[] args) {
SpringApplication.run(SpringdataApplication.class, args);
}
}
在上述代码中,我们使用了 Redis 提供的两种 Template,一种 RedisTemplate,一种 stringRedisTemplate。但是当我们使用后者去存一个数据后,你会发现使用前者是取不到对应的数据的。输出结果如下:
myvalue
null
此时你可能会想,这个问题不是很简单么?肯定是这两个 Template 不同导致的。
没错,这是一个极度简化的案例,我们的学习目的是举一反三。你可以试想一下,如果我们是不同的开发者开发不同的项目呢?一个项目只负责存储,另外一个项目只负责读取,两个项目之间缺乏沟通和协调。这种问题在实际工作中并不稀奇,接下来我们就了解下这个问题背后的深层次原因。
案例解析
要了解这个问题,需要我们对 Spring Data Redis 的操作流程有所了解。
首先,我们需要认清一个现实:我们不可能直接将数据存取到 Redis 中,毕竟一些数据是一个对象型,例如 String,甚至是一些自定义对象。我们需要在存取前对数据进行序列化或者反序列化操作。
具体到我们的案例而言,当带着 key 去存取数据时,它会执行 AbstractOperations#rawKey,使得在执行存储 key-value 到 Redis,或从 Redis 读取数据之前,对 key 进行序列化操作:
byte[] rawKey(Object key) {
Assert.notNull(key, "non null key required");
if (keySerializer() == null && key instanceof byte[]) {
return (byte[]) key;
}
return keySerializer().serialize(key);
}
从上述代码可以看出,假设存在 keySerializer,则利用它将 key 序列化。而对于
StringRedisSerializer 来说,它指定的其实是 StringRedisSerializer。具体实现如下:
public class StringRedisSerializer implements RedisSerializer<String> {
private final Charset charset;
@Override
public byte[] serialize(@Nullable String string) {
return (string == null ? null : string.getBytes(charset));
}
}
而如果我们使用的是 RedisTemplate,则使用的是 JDK 序列化,具体序列化操作参考下面的实现:
public class JdkSerializationRedisSerializer implements RedisSerializer<Object> {
@Override
public byte[] serialize(@Nullable Object object) {
if (object == null) {
return SerializationUtils.EMPTY_ARRAY;
}
try {
return serializer.convert(object);
} catch (Exception ex) {
throw new SerializationException("Cannot serialize", ex);
}
}
}
很明显,上面对 key 的处理,采用的是 JDK 的序列化,最终它调用的方法如下:
public interface Serializer<T> {
void serialize(T var1, OutputStream var2) throws IOException;
default byte[] serializeToByteArray(T object) throws IOException {
ByteArrayOutputStream out = new ByteArrayOutputStream(1024);
this.serialize(object, out);
return out.toByteArray();
}
}
你可以直接将"mykey"这个字符串分别用上面提到的两种序列化器进行序列化,你会发现它们的结果确实不同。这也就解释了为什么它们不能读取到"mykey"设置的"myvalue"。
至于它们是如何指定 RedisSerializer 的,,我们可以以 StringRedisSerializer 为例简单看下。查看下面的代码,它是 StringRedisSerializer 的构造器,在构造器中,它直接指定了 KeySerializer 为 RedisSerializer.string():
public class StringRedisTemplate extends RedisTemplate<String, String> {
public StringRedisTemplate() {
setKeySerializer(RedisSerializer.string());
setValueSerializer(RedisSerializer.string());
setHashKeySerializer(RedisSerializer.string());
setHashValueSerializer(RedisSerializer.string());
}
}
其中 RedisSerializer.string() 最终返回的实例如下:
public static final StringRedisSerializer UTF_8 = new StringRedisSerializer(StandardCharsets.UTF_8);
案例修正
要解决这个问题,非常简单,就是检查自己所有的数据操作,是否使用了相同的 RedisTemplate,就是相同,也要检查所指定的各种 Serializer 是否完全一致,否则就会出现各式各样的错误。