基于similarities的文本语义相似度计算和文本匹配搜索

similarities 实现了多种相似度计算、匹配搜索算法,支持文本、图像,python3开发。

安装

python 复制代码
pip3 install torch # conda install pytorch
pip3 install -U similarities

python 复制代码
git clone https://github.com/shibing624/similarities.git
cd similarities
python3 setup.py install

报错

ChineseCLIPProcessor

Traceback (most recent call last): File "xx\similarity_test1.py",

line 9, in

from similarities import BertSimilarity File "xx\lib\site-packages\similarities_init _.py", line 28, in

from similarities.clip_similarity import ClipSimilarity File "xx\lib\site-packages\similarities\clip_similarity.py", line 16, in

from similarities.clip_module import ClipModule File "xx\lib\site-packages\similarities\clip_module.py", line 18, in

from transformers import ChineseCLIPProcessor, ChineseCLIPModel, CLIPProcessor, CLIPModel ImportError: cannot import name

'ChineseCLIPProcessor' from 'transformers'

(xx\lib\site-packages\transformers_init_.py)

报这个错的原因是transformers版本太低,升级下版本就可以了。

python 复制代码
pip install --upgrade transformers

pydantic

另外还缺少pydantic:

python 复制代码
pip install pydantic

样例

python 复制代码
# -*- coding: utf-8 -*-
"""
@author:XuMing(xuming624@qq.com)
@description: 文本语义相似度计算和文本匹配搜索
"""
import sys

sys.path.append('..')
from similarities import BertSimilarity

# 1.Compute cosine similarity between two sentences.
sentences = ['如何更换花呗绑定银行卡',
             '花呗更改绑定银行卡']
corpus = [
    '花呗更改绑定银行卡',
    '我什么时候开通了花呗',
    '俄罗斯警告乌克兰反对欧盟协议',
    '暴风雨掩埋了东北部;新泽西16英寸的降雪',
    '中央情报局局长访问以色列叙利亚会谈',
    '人在巴基斯坦基地的炸弹袭击中丧生',
]
model = BertSimilarity(model_name_or_path="shibing624/text2vec-base-chinese")
print(model)
similarity_score = model.similarity(sentences[0], sentences[1])
print(f"{sentences[0]} vs {sentences[1]}, score: {float(similarity_score):.4f}")

print('-' * 50 + '\n')
# 2.Compute similarity between two list
similarity_scores = model.similarity(sentences, corpus)
print(similarity_scores.numpy())
for i in range(len(sentences)):
    for j in range(len(corpus)):
        print(f"{sentences[i]} vs {corpus[j]}, score: {similarity_scores.numpy()[i][j]:.4f}")

print('-' * 50 + '\n')
# 3.Semantic Search
model.add_corpus(corpus)
res = model.most_similar(queries=sentences, topn=3)
print(res)
for q_id, id_score_dict in res.items():
    print('query:', sentences[q_id])
    print("search top 3:")
    for corpus_id, s in id_score_dict.items():
        print(f'\t{model.corpus[corpus_id]}: {s:.4f}')

print('-' * 50 + '\n')
print(model.search(sentences[0], topn=3))

结果:

复制代码
Similarity: BertSimilarity, matching_model: <SentenceModel: shibing624/text2vec-base-chinese, encoder_type: MEAN, max_seq_length: 256, emb_dim: 768>
2024-03-07 20:12:46.481 | DEBUG    | text2vec.sentence_model:__init__:80 - Use device: cpu
如何更换花呗绑定银行卡 vs 花呗更改绑定银行卡, score: 0.8551
--------------------------------------------------

[[0.8551465  0.72119546 0.14502521 0.21666759 0.25171342 0.08089039]
 [0.9999997  0.6807433  0.17136583 0.21621695 0.27282682 0.12791349]]
如何更换花呗绑定银行卡 vs 花呗更改绑定银行卡, score: 0.8551
如何更换花呗绑定银行卡 vs 我什么时候开通了花呗, score: 0.7212
如何更换花呗绑定银行卡 vs 俄罗斯警告乌克兰反对欧盟协议, score: 0.1450
如何更换花呗绑定银行卡 vs 暴风雨掩埋了东北部;新泽西16英寸的降雪, score: 0.2167
如何更换花呗绑定银行卡 vs 中央情报局局长访问以色列叙利亚会谈, score: 0.2517
如何更换花呗绑定银行卡 vs 人在巴基斯坦基地的炸弹袭击中丧生, score: 0.0809
花呗更改绑定银行卡 vs 花呗更改绑定银行卡, score: 1.0000
花呗更改绑定银行卡 vs 我什么时候开通了花呗, score: 0.6807
花呗更改绑定银行卡 vs 俄罗斯警告乌克兰反对欧盟协议, score: 0.1714
花呗更改绑定银行卡 vs 暴风雨掩埋了东北部;新泽西16英寸的降雪, score: 0.2162
花呗更改绑定银行卡 vs 中央情报局局长访问以色列叙利亚会谈, score: 0.2728
花呗更改绑定银行卡 vs 人在巴基斯坦基地的炸弹袭击中丧生, score: 0.1279
--------------------------------------------------

2024-03-07 20:13:03.429 | INFO     | similarities.bert_similarity:add_corpus:108 - Start computing corpus embeddings, new docs: 6
Batches: 100%|██████████| 1/1 [00:10<00:00, 10.45s/it]
2024-03-07 20:13:13.889 | INFO     | similarities.bert_similarity:add_corpus:120 - Add 6 docs, total: 6, emb len: 6
{0: {0: 0.8551465272903442, 1: 0.7211954593658447, 4: 0.25171342492103577}, 1: {0: 0.9999997019767761, 1: 0.6807432770729065, 4: 0.27282682061195374}}
query: 如何更换花呗绑定银行卡
search top 3:
	花呗更改绑定银行卡: 0.8551
	我什么时候开通了花呗: 0.7212
	中央情报局局长访问以色列叙利亚会谈: 0.2517
query: 花呗更改绑定银行卡
search top 3:
	花呗更改绑定银行卡: 1.0000
	我什么时候开通了花呗: 0.6807
	中央情报局局长访问以色列叙利亚会谈: 0.2728
--------------------------------------------------

{0: {0: 0.8551465272903442, 1: 0.7211954593658447, 4: 0.25171342492103577}}

相关链接

https://github.com/shibing624/similarities
https://huggingface.co/shibing624/text2vec-base-chinese
Compute similarity score Demo
Semantic Search Demo

相关推荐
Amelia1111116 小时前
day33
python
数据知道6 小时前
一文掌握向量数据库Chroma的详细使用
数据库·python·向量数据库
计算机毕设指导67 小时前
基于微信小程序+django连锁火锅智慧餐饮管理系统【源码文末联系】
java·后端·python·mysql·微信小程序·小程序·django
colourmind7 小时前
记录一次vscode debug conda python 使用报错问题排查
vscode·python·conda
智航GIS7 小时前
2.1 变量与数据类型
开发语言·python
旧梦吟7 小时前
脚本工具 批量md转html
前端·python·html5
BoBoZz197 小时前
DeformPointSet 基于控制网格(Control Mesh)的 3D 几何体形变
python·vtk·图形渲染·图形处理
不会飞的鲨鱼7 小时前
抖音验证码滑动轨迹原理(续)
javascript·爬虫·python
翔云 OCR API7 小时前
文档识别接口:赋能企业高效办公与加速信息的数字化转型
开发语言·人工智能·python·计算机视觉·ocr·语音识别
咕噜签名-铁蛋7 小时前
游戏搭建与云服务器:构建高效稳定的游戏运营架构
python