堆和堆排序

堆排序是一种与插入排序和并归排序十分不同的算法。

优先级队列

Priority Queue

优先级队列是类似于常规队列或堆栈数据结构的抽象数据类型(ADT)。优先级队列中的每个元素都有一个相关联的优先级key。在优先级队列中,高优先级的元素优先于低优先级的元素。

虽然优先级队列通常使用堆heap实现,但它们在概念上与堆不同。优先级队列是一种抽象的数据结构,如列表或映射; 正如列表可以用链表或数组实现一样,优先级队列也可以用堆或其他方法(如有序数组)实现。

Heap

堆可以理解为由一个由数组来顺序存储的完全二叉树。

最大堆:任意节点的key 子节点的key

类似的

最小堆:任意节点的key 子节点的key

以最大堆为例,来讲解

最大堆

最大堆的操作

build_max_heap:根据一个未排序的数组生成一个最大堆

max_heapify: 如果子树的根节点违反最大堆的特性,就对其进行纠正。max_heapify的前提是子树的左右子树都是最大堆。

build_max_heap的伪代码:

cpp 复制代码
for i = n/2 down to 1
    do max_heapify(A,i)

max_heapify和build_max_heap的时间复杂度

对叶子结点上面一层的结点(level 1)进行max_heapify是O(1)的时间复杂度

对叶子结点上面i层 level i 的结点进行max_heapify是O(i)

n/4个结点是level 1,n/8个结点是level 2,n/16个结点是level 3 ... 1个结点是level logn

因此max_heapify的时间复杂度为O(logn),可计算出build_max_heap的时间复杂度为O(n)

计算过程在最底下

堆排序步骤

1.根据一个未排序的数组来创建最大堆

2.找到最大元素A[1]

3.交换元素A[n]和A[1],现在最大元素位于堆的尾部

4.移除A[n](最大元素),只需将存放堆的数组的大小减1

5.经过交换元素之后的堆也许违背了最大堆的定义,但是A[1]的孩子仍然是最大堆,因此进行max_heapify,经过修正后,整个堆就是最大堆;重复步骤2-5,n次。

cpp 复制代码
class Solution {
public:
    //堆是一个完全二叉树,因此适合使用顺序存储的方式。
    //堆排序步骤:
    //1.根据一个未排序的数组来创建最大堆
    //2.找到最大元素A[1]
    //3.交换元素A[n]和A[1],现在最大元素位于堆的尾部
    //4.移除A[n](最大元素),存放堆的数组的大小减1
    //5.经过交换元素之后的堆也许违背了最大堆的定义,但是A[1]的孩子仍然是最大堆,因此进行max_heapify,经过修正后,整个堆就是最大堆;重复2-5,n次

    //时间复杂度O(nlogn)
    vector<int> sortArray(vector<int>& nums) {
        build_max_heap(nums);
        //堆排序
        int n = nums.size();
        while(n > 0)
        {//重复n次
            //找到最大元素,并与堆末尾元素进行交换
            int max_elem = nums[0];
            nums[0] = nums[n-1];
            nums[n-1] = max_elem;
            --n;//移出末尾元素
            //进行max_heapify
            max_heapify(nums, 0, n);
        }
        return nums;
    }

    void build_max_heap(vector<int>& nums)
    {
        int size = nums.size();
        for(int i = size/2-1;i >= 0;--i)
        {
            max_heapify(nums, i, size);
        }
    }

    void max_heapify(vector<int>& nums, int i, int size)
    {//将A[i]修正为最大堆
        //A[i]的左孩子为A[2i+1],右孩子为A[2i+2]
        int left = (i<<1) + 1;
        int right = left + 1;
        int large = left;//默认较大元素为左节点
        while(large < size)
        {
            if(right < size && nums[right] > nums[left])
            {//假如右结点大于左节点
                large = right;//记右结点为较大的
            }
            if(nums[i] < nums[large])
            {//假如父节点小于左右结点中较大的结点
                //将父节点与较大的结点进行交换,从而使父节点大于左右子结点,符合最大堆的约束
                int tmp = nums[i];
                nums[i] = nums[large];
                nums[large] = tmp;
                i = large;//i调节为其子结点large
                large = (i<<1)+ 1;//large调整为i的左子节点
            }
            else
            {
                break;
            }
        }
    }

};

相关推荐
迷迭所归处3 分钟前
动态规划 —— 子数组系列-单词拆分
算法·动态规划
爱吃烤鸡翅的酸菜鱼4 分钟前
Java算法OJ(8)随机选择算法
java·数据结构·算法·排序算法
寻找码源1 小时前
【头歌实训:利用kmp算法求子串在主串中不重叠出现的次数】
c语言·数据结构·算法·字符串·kmp
Matlab精灵1 小时前
Matlab科研绘图:自定义内置多款配色函数
算法·matlab
诚丞成1 小时前
滑动窗口篇——如行云流水般的高效解法与智能之道(1)
算法
手握风云-1 小时前
数据结构(Java版)第二期:包装类和泛型
java·开发语言·数据结构
带多刺的玫瑰2 小时前
Leecode刷题C语言之统计不是特殊数字的数字数量
java·c语言·算法
爱敲代码的憨仔2 小时前
《线性代数的本质》
线性代数·算法·决策树
熬夜学编程的小王3 小时前
【C++篇】深度解析 C++ List 容器:底层设计与实现揭秘
开发语言·数据结构·c++·stl·list
yigan_Eins3 小时前
【数论】莫比乌斯函数及其反演
c++·经验分享·算法