二叉搜索树(BST)的创建及增,删,查,改(详解)

目录

初识二叉搜索树(BST):

二叉搜索树查找元素:

二叉搜索树修改元素:

二叉搜索树中的增加元素:

二叉搜索树中的删除元素:


初识二叉搜索树(BST):

一张图简要概括二叉搜索树:

通过定义可知,对于每个节点,左子树的所有节点的值都比它小,右子树的所有节点值都比它大,我们可以很轻易的得出这颗树的最左侧叶子节点的值是最小值,最右侧叶子节点的值是最大值。

那中序遍历为什么一定是有序的呢?原理也很简单, 我们先看看二叉树递归的图解:

对于图中的二叉树,中序遍历的结果是:3,2,4,1,7,6,5。按照左子树-》根-》右子树的模式不断递归,结合BST左小右大的特性,那么先得到的值一定是当前树中最小的,同时根是次小的,最后是当前树中最大的。从底部出发,向上不断回溯调用,就得到了顺序的结果。

二叉搜索树查找元素:

题目链接:700. 二叉搜索树中的搜索 - 力扣(LeetCode)

题目描述:

给定二叉搜索树(BST)的根节点 root 和一个整数值 val

你需要在 BST 中找到节点值等于 val 的节点。 返回以该节点为根的子树。 如果节点不存在,则返回 null

如果是在一颗不同的二叉树中搜索(代码如下):

java 复制代码
TreeNode searchBST(TreeNode root, int target);
    if (root == null) return null;
    if (root.val == target) return root;
    // 当前节点没找到就递归地去左右子树寻找
    TreeNode left = searchBST(root.left, target);
    TreeNode right = searchBST(root.right, target);

    return left != null ? left : right;//相当于返回叶子节点
}

其实不需要递归地搜索两边,类似二分查找思想,根据 targetroot.val 的大小比较,就能排除一边。我们把上面的思路稍稍改动:

java 复制代码
TreeNode searchBST(TreeNode root, int target) {
    if (root == null) {
        return null;
    }
    // 去左子树搜索
    if (root.val > target) {
        return searchBST(root.left, target);
    }
    // 去右子树搜索
    if (root.val < target) {
        return searchBST(root.right, target);
    }
    return root;//上面两个都不满足,说明root.val == target直接返回root
}

二叉搜索树修改元素:

无非就是先找到元素对应的位置后再修改该位置对应的值:

java 复制代码
TreeNode searchBST(TreeNode root, int target,num) {
    if (root == null) {
        return null;
    }
    // 去左子树搜索
    if (root.val > target) {
        return searchBST(root.left, target);
    }
    // 去右子树搜索
    if (root.val < target) {
        return searchBST(root.right, target);
    }
    root.val = num;//将树中对应的target值改为num
    return root;//上面两个都不满足,说明root.val == target直接返回root
}

二叉搜索树中的增加元素:

这里我们需要更改二叉搜索树的结构:一旦涉及「改」,就类似二叉树的构造问题,函数要返回 TreeNode 类型,并且要对递归调用的返回值进行接收

java 复制代码
TreeNode insertIntoBST(TreeNode root, int val) {
    // 找到空位置插入新节点
    if (root == null) return new TreeNode(val);//这里就相当于将节点接入到二叉树对应的叶子中
    // if (root.val == val)
    //     BST 中一般不会插入已存在元素
    if (root.val < val) 
        root.right = insertIntoBST(root.right, val);
    if (root.val > val) 
        root.left = insertIntoBST(root.left, val);
    return root;
}

二叉搜索树中的删除元素:

这个问题稍微复杂,跟插入操作类似,先「找」再「改」,先把框架写出来再说:

java 复制代码
TreeNode deleteNode(TreeNode root, int key) {
    if (root.val == key) {
        // 找到啦,进行删除
    } else if (root.val > key) {
        // 去左子树找
        root.left = deleteNode(root.left, key);
    } else if (root.val < key) {
        // 去右子树找
        root.right = deleteNode(root.right, key);
    }
    return root;
}

找到目标节点了,比方说是节点 A,如何删除这个节点,这是难点。因为删除节点的同时不能破坏 BST 的性质。有三种情况,用图片来说明。

情况 1A 恰好是末端节点,两个子节点都为空,那么它可以当场去世了。

java 复制代码
if (root.left == null && root.right == null)
    return null;

情况 2A 只有一个非空子节点,那么它要让这个孩子接替自己的位置。

java 复制代码
// 排除了情况 1 之后
if (root.left == null) return root.right;
if (root.right == null) return root.left;

情况 3A 有两个子节点,麻烦了,为了不破坏 BST 的性质,A 必须找到左子树中最大的那个节点,或者右子树中最小的那个节点来接替自己。我们以第二种方式讲解。

java 复制代码
if (root.left != null && root.right != null) {
    // 找到右子树的最小节点
    TreeNode minNode = getMin(root.right);
    // 把 root 改成 minNode
    root.val = minNode.val;
    // 转而去删除 minNode
    root.right = deleteNode(root.right, minNode.val);
}

三中情况都完成后,整理一下代码:

java 复制代码
TreeNode deleteNode(TreeNode root, int key) {
    if (root == null) return null;
    if (root.val == key) {
        // 这两个 if 把情况 1 和 2 都正确处理了
        if (root.left == null) return root.right;
        if (root.right == null) return root.left;
        // 处理情况 3
        // 获得右子树最小的节点
        TreeNode minNode = getMin(root.right);
        // 删除右子树最小的节点
        root.right = deleteNode(root.right, minNode.val);
        // 用右子树最小的节点替换 root 节点
        minNode.left = root.left;
        minNode.right = root.right;
        root = minNode;
    } else if (root.val > key) {
        root.left = deleteNode(root.left, key);
    } else if (root.val < key) {
        root.right = deleteNode(root.right, key);
    }
    return root;
}

TreeNode getMin(TreeNode node) {
    // BST 最左边的就是最小的
    while (node.left != null) node = node.left;
    return node;
}

参考:《labuladong算法笔记》

结语: 写博客不仅仅是为了分享学习经历,同时这也有利于我巩固自己的知识点,总结该知识点,由于作者水平有限,对文章有任何问题的还请指出,接受大家的批评,让我改进。同时也希望读者们不吝啬你们的点赞+收藏+关注,你们的鼓励是我创作的最大动力!

相关推荐
欧阳枫落12 分钟前
python 2小时学会八股文-数据结构
开发语言·数据结构·python
手握风云-25 分钟前
零基础Java第十六期:抽象类接口(二)
数据结构·算法
笨小古1 小时前
路径规划——RRT-Connect算法
算法·路径规划·导航
<但凡.1 小时前
编程之路,从0开始:知识补充篇
c语言·数据结构·算法
f狐0狸x2 小时前
【数据结构副本篇】顺序表 链表OJ
c语言·数据结构·算法·链表
paopaokaka_luck2 小时前
基于Spring Boot+Vue的多媒体素材管理系统的设计与实现
java·数据库·vue.js·spring boot·后端·算法
Tmbcan2 小时前
zkw 线段树-原理及其扩展
数据结构·zkw 线段树
视觉小萌新2 小时前
VScode+opencv——关于opencv多张图片拼接成一张图片的算法
vscode·opencv·算法
2301_801760932 小时前
数据结构--PriorityQueue
数据结构
乐悠小码2 小时前
数据结构------队列(Java语言描述)
java·开发语言·数据结构·链表·队列