【自然语言处理六-最重要的模型-transformer-下】

自然语言处理六-最重要的模型-transformer-下

  • [transformer decoder](#transformer decoder)
    • [Masked multi-head attention](#Masked multi-head attention)
    • [encoder和decoder的连接部分-cross attention](#encoder和decoder的连接部分-cross attention)
    • decoder的输出

transformer decoder

今天接上一篇文章讲的encoder 自然语言处理六-最重要的模型-transformer-上,继续讲transformer的decoder,也就是下图中的红框部分

可以看出encoder和decoder部分去掉粉红色框的部分,结构几乎一样,下面分三部分介绍不同点

Masked multi-head attention

decoder的注意力是masked的注意力,什么是masked的attention呢? 下面是self attention:

需要注意的是:

selfattention中注意力bi的输出是需要关注所有的输入,也就是下面那一整排向量

但如果是masked self-attention,注意力是这样子的:

这个与普通的self attention的区别

bi只能关注a0到ai的输入,不能包括ai+1后的输入,那么为什么需要masked attention呢?

用下面的语音辨识,举个例子说明一下:

encoder是把一次性把所有的输入都输入到模型,计算注意力分数,但是对于decoder来说,它是一个字一个字产生:

比如decoder计算第一个位置应该输入什么的时候,它并不知道下一个的输入是"機",所以必须遮蔽右边的输入,因此又叫masked self-attention。

decoder中下一次的输入是在本次输入BEGIN计算出来以后"機"这个字,作为下一次的输入。

需要说明的一点是:

实际上我们在训练的时候是知道每个输入的,因为这些信息是训练资料提供的,但真正测试使用的时候,是无法知晓的。

encoder和decoder的连接部分-cross attention

下面是encoder和decoder的互连部分:

相同的Add和Norm不再赘述,下面是attention部分,这个attention部分的输入分为3部分:

有两个箭头来自encoder的输出(这部分用作self attention中的k和v)

一个箭头来自decoder上一层的输出(这一部分用作q)

所以计算attention的流程是这样的:

左边这边encoder的输出,用于生成k v,右边decoder上一层的输出,用作q

按照普通的attention计算注意力分数后,最终生成v

然后进行add 残差连接和norm 归一化后,作为这一层的输出

然后继续输入到FC(feed forward netword)中

除了上面几部分不同,还需要关注的decoder如何处理输出。

decoder的输出

decoder输出的序列长度应该是多长呢?

比还是以语音辨识为例,输入一段语音究竟应该输出多少个字符根本无法确认,那么decoder究竟是怎么确定输出的长度的呢?有两种做法AT和NAT (AT是Autoregresssive的缩写)

AT(Autoregresssive)

这种做法就是让机器自己决定要输多少长度的sequence,当模型输出END的时候,就认为decoder输出完毕

NAT

这种情况下有几种方法确定decoder输出的长度:

1.添加一个网络来预测输出的长度

2.输入一排BEGIN向量,输出一排向量即可,最终的输出截止到输出为END

通常情况下,我们都是用AT,效果更好一些

相关推荐
DevSecOps选型指南6 分钟前
SBOM风险预警 | NPM前端框架 javaxscript 遭受投毒窃取浏览器cookie
前端·人工智能·前端框架·npm·软件供应链安全厂商·软件供应链安全工具
rocksun9 分钟前
MCP利用流式HTTP实现实时AI工具交互
人工智能·mcp
xiaok32 分钟前
docker network create langbot-network这条命令在dify输入还是在langbot中输入
人工智能
It_张34 分钟前
LLM(大语言模型)的工作原理 图文讲解
人工智能·语言模型·自然语言处理
Darach36 分钟前
坐姿检测Python实现
人工智能·python
xiaok36 分钟前
LangBot 和消息平台均运行在 Docker 容器中
人工智能
queeny1 小时前
Datawhale AI夏令营 科大讯飞AI大赛(大模型技术) Task3 心得
人工智能
ToTensor1 小时前
Paraformer实时语音识别中的碎碎念
人工智能·语音识别·xcode
陈佬昔没带相机1 小时前
Mac Mini 玩大模型避坑指南
人工智能·mac