手动计算BatchNorm, 手动计算LayerNorm, 手动计算GroupNorm, 手动计算InstanceNorm

接上一篇:
LayerNorm的图是不是画错了

这里手动计算 LN,本篇把我前两天闲的没事干写的验证代码放上了,还是上一篇的问题,有木有大佬解决一下我上一篇的问题,LayerNorm的图是画错了,还是我理解错了

1. 手动计算BN

python 复制代码
import torch
import torch.nn as nn

torch.manual_seed(1107)
# x = torch.arange(4).float().reshape(1, 2, 1, 2)  # 假设的输入
x = torch.rand(3, 32, 30, 32)

# 实例化BatchNorm2d
m = nn.BatchNorm2d(32, momentum=1)
m.train()  # 设置为评估模式

# m.running_var = 0

# 使用BatchNorm2d计算
y = m(x)

# 手动计算BatchNorm2d
x_mean = x.mean(dim=[0, 2, 3], keepdim=True)
x_var = x.var(dim=[0, 2, 3], keepdim=True, unbiased=False)
eps = m.eps


y_manual = (x - x_mean) / ((x_var + eps).sqrt())

# 检查两种方法的输出是否一致
# print("使用BatchNorm2d的结果:", y)
# print("手动计算的结果:", y_manual)
print("结果是否一致:", torch.allclose(y, y_manual, atol=1e-6))

2. 手动计算GN

python 复制代码
import torch
import torch.nn as nn

torch.manual_seed(1107)

num_channels = 64  # 确保这个数可以被num_groups整除
# 假设x的形状是(B, C, H, W),这里我们按照通常的卷积神经网络输入布局
x = torch.rand(32, num_channels, 256, 256)  # 修改x的形状以适配GroupNorm的输入需求

# 定义组数G,每组的通道数C/G需要是整数
num_groups = 32


m = nn.GroupNorm(
    num_groups=num_groups, num_channels=num_channels, eps=1e-5, affine=False
)
m.eval()  # 设置为评估模式

y = m(x)

# 手动计算GroupNorm
C_per_group = num_channels // num_groups

x = x.view(32, num_groups, C_per_group, 256, 256)  # 重塑x以便可以对每组进行操作
x_mean = x.mean(dim=[2, 3, 4], keepdim=True)
x_var = x.var(dim=[2, 3, 4], keepdim=True, unbiased=False)
eps = m.eps

y_manual = (x - x_mean) / ((x_var + eps).sqrt())
y_manual = y_manual.view(32, num_channels, 256, 256)  # 将y_manual的形状重塑回原始形状

print("结果是否一致:", torch.allclose(y, y_manual, atol=1e-6))

3. 手动计算IN

python 复制代码
import torch
import torch.nn as nn

torch.manual_seed(1107)

# 假设x的形状是(B, C, H, W)
x = torch.rand(32, 256, 40, 40)  # 添加一个维度以匹配四维输入

m = nn.InstanceNorm2d(256, affine=False, momentum=1)
m.eval()  # 设置为评估模式

y = m(x)

# 手动计算LayerNorm
x_mean = x.mean(dim=[2, 3], keepdim=True)
x_var = x.var(dim=[2, 3], keepdim=True, unbiased=False)
eps = m.eps

y_manual = (x - x_mean) / ((x_var + eps).sqrt())

print("结果是否一致:", torch.allclose(y, y_manual, atol=1e-6))
相关推荐
电棍2331 小时前
工程记录:使用tello edu无人机进行计算机视觉工作(手势识别,yolo3搭载)
人工智能·计算机视觉·无人机
wan5555cn1 小时前
国产电脑操作系统与硬盘兼容性现状分析:挑战与前景评估
人工智能·笔记·深度学习·机器学习·电脑·生活
BullSmall2 小时前
汽车HIL测试:电子开发的关键验证环节
人工智能·机器学习·自动驾驶
woshihonghonga2 小时前
停止Conda开机自动运行方法
linux·人工智能·conda
海洲探索-Hydrovo4 小时前
TTP Aether X 天通透传模块丨国产自主可控大数据双向通讯定位模组
网络·人工智能·科技·算法·信息与通信
触想工业平板电脑一体机4 小时前
【触想智能】工业安卓一体机在人工智能领域上的市场应用分析
android·人工智能·智能电视
墨染天姬6 小时前
【AI】数学基础之矩阵
人工智能·线性代数·矩阵
2401_841495647 小时前
【计算机视觉】基于复杂环境下的车牌识别
人工智能·python·算法·计算机视觉·去噪·车牌识别·字符识别
zhangjipinggom7 小时前
multi-head attention 多头注意力实现细节
深度学习
倔强青铜三8 小时前
苦练Python第66天:文件操作终极武器!shutil模块完全指南
人工智能·python·面试