nn.Conv2d()中的groups分组参数

1.参考文章:

【Pytorch】搞懂nn.Conv2d的groups参数的作用 - 知乎 (zhihu.com)

2.理解:

(1)只要你 明白了 多通道的卷积是如何实现的(可以看我的1X1卷积文章),那么这里的分组进行卷积就非常好理解了

核心:其实,虽然我们知道nn.Conv2d(in_fea,out_fea)就是从in_fea个channels 变成 out_fea个channels, 而且也知道是 由out_fea个kernel干的这件事情。

但是,每个kernel其实会把 "同一个"位置的 "所有输入channels"全部进行处理。 √

(2)效果:

--如果分groups =2 ,就可以然参数量 变成1/2 上面那篇知乎文章最后的手绘图清晰

--如果分groups =in_dim,自然,可以将参数量 变成1/in_dim

相关推荐
JicasdC123asd4 分钟前
【深度学习实战】基于Mask-RCNN和HRNetV2P的腰果智能分级系统_1
人工智能·深度学习
星爷AG I18 分钟前
9-28 视觉工作记忆(AGI基础理论)
人工智能·计算机视觉·agi
陈天伟教授25 分钟前
人工智能应用- 语言理解:07.大语言模型
人工智能·深度学习·语言模型
岱宗夫up28 分钟前
机器学习:标准化流模型(NF)
人工智能·python·机器学习·生成对抗网络
程序猿阿伟29 分钟前
《游戏AI训练模拟环境:高保真可加速构建实战指南》
人工智能·游戏
花月mmc32 分钟前
CanMV K230 波形识别——整体部署(4)
人工智能·python·嵌入式硬件·深度学习·信号处理
tel_1821753976743 分钟前
AOI全自动视觉检测生活用纸表面缺陷检测
人工智能·视觉检测·生活
萝卜不爱吃萝卜、44 分钟前
智能体来了:从 0 到 1 搭建个人 AI 助手
人工智能
一休哥助手1 小时前
2026年2月2日人工智能早间新闻
人工智能
爱吃泡芙的小白白1 小时前
CNN的FLOPs:从理论计算到实战避坑指南
人工智能·神经网络·cnn·flops