nn.Conv2d()中的groups分组参数

1.参考文章:

【Pytorch】搞懂nn.Conv2d的groups参数的作用 - 知乎 (zhihu.com)

2.理解:

(1)只要你 明白了 多通道的卷积是如何实现的(可以看我的1X1卷积文章),那么这里的分组进行卷积就非常好理解了

核心:其实,虽然我们知道nn.Conv2d(in_fea,out_fea)就是从in_fea个channels 变成 out_fea个channels, 而且也知道是 由out_fea个kernel干的这件事情。

但是,每个kernel其实会把 "同一个"位置的 "所有输入channels"全部进行处理。 √

(2)效果:

--如果分groups =2 ,就可以然参数量 变成1/2 上面那篇知乎文章最后的手绘图清晰

--如果分groups =in_dim,自然,可以将参数量 变成1/in_dim

相关推荐
Echo_NGC22373 分钟前
【FFmpeg 使用指南】Part 3:码率控制策略与质量评估体系
人工智能·ffmpeg·视频·码率
纤纡.13 分钟前
PyTorch 入门精讲:从框架选择到 MNIST 手写数字识别实战
人工智能·pytorch·python
大大大反派14 分钟前
CANN 生态中的自动化部署引擎:深入 `mindx-sdk` 项目构建端到端 AI 应用
运维·人工智能·自动化
程序猿追15 分钟前
深度解读 AIR (AI Runtime):揭秘 CANN 极致算力编排与调度的核心引擎
人工智能
2601_9495936519 分钟前
深入解析CANN-acl应用层接口:构建高效的AI应用开发框架
数据库·人工智能
●VON22 分钟前
CANN安全与隐私:从模型加固到数据合规的全栈防护实战
人工智能·安全
刘大大Leo28 分钟前
GPT-5.3-Codex 炸了:第一个「自己造自己」的 AI 编程模型,到底意味着什么?
人工智能·gpt
小镇敲码人31 分钟前
剖析CANN框架中Samples仓库:从示例到实战的AI开发指南
c++·人工智能·python·华为·acl·cann
摘星编程38 分钟前
CANN ops-nn Pooling算子解读:CNN模型下采样与特征提取的核心
人工智能·神经网络·cnn
程序员清洒1 小时前
CANN模型安全:从对抗防御到隐私保护的全栈安全实战
人工智能·深度学习·安全