torchvision中的数据使用

1、下载数据集

在pytorch官网中找到docs选择Domains,在该页面中有各种数据类型的数据集

在左边菜单栏中选择datasets

python 复制代码
import torchvision
train_set=torchvision.datasets.CIFAR10(root='/data',train=True,download=True)
test_set=torchvision.datasets.CIFAR10(root='./data',train=False,download=True)

2、Dataloader的使用

Dataloader参数介绍

  • dataset :加载的数据集,必须是 torch.utils.data.Dataset 的子类实例。

  • batch_size:每个批次的数据样本数,默认值为1。

  • shuffle:是否在每个周期开始时打乱数据,默认为 False。

  • sampler:定义从数据集中抽取样本的策略,如果指定,则忽略 shuffle 参数。

  • num_workers:用于数据加载的子进程数量,默认为0,表示数据将在主进程中加载。

  • collate_fn:如何将多个数据样本整合成一个批次,通常不需要指定。

  • pin_memory:如果为 True,会将数据放置到 GPU 上去,默认为 False。

  • drop_last:如果数据集大小不能被批次大小整除,是否丢弃最后一个不完整的批次,默认为 False。

python 复制代码
test_loader=DataLoader(dataset=test_set,batch_size=4,shuffle=True,num_workers=0,drop_last=False)
#获取一张图片的信息
img,target=test_set[0]
print(img.shape)
print(target)

writer=SummaryWriter("dataloader")
#taet_loader是一个迭代对象,用for循环进行迭代
step=0
for data in test_loader:
    imgs,targets=data
    # print(imgs.shape)
    # print(targets)
    writer.add_image("test_data",imgs,step,dataformats='NCHW')
    step+=1

writer.close()

添加轮次

python 复制代码
for epoch in range(2):
    step=0
    for data in test_loader:
        imgs,targets=data
        # print(imgs.shape)
        # print(targets)
        writer.add_image("Epoch:{}".format(epoch),imgs,step,dataformats='NCHW')
        step+=1
相关推荐
hqyjzsb4 小时前
2025年市场岗位能力重构与跨领域转型路径分析
c语言·人工智能·信息可视化·重构·媒体·改行学it·caie
爱学习的uu5 小时前
CURSOR最新使用指南及使用思路
人工智能·笔记·python·软件工程
叶凡要飞5 小时前
RTX5060Ti安装双系统ubuntu22.04各种踩坑点(黑屏,引导区修复、装驱动、server版本安装)
人工智能·python·yolo·ubuntu·机器学习·操作系统
叶庭云5 小时前
一文掌握 CodeX CLI 安装以及使用!
人工智能·openai·安装·使用教程·codex cli·编码智能体·vibe coding 终端
yuluo_YX5 小时前
VSR 项目解析
人工智能·python
cdming6 小时前
微软Win11双AI功能来袭:“AI管家”+聊天机器人重构桌面交互体验
人工智能·microsoft·机器人
罗西的思考6 小时前
[Agent] ACE(Agentic Context Engineering)和Dynamic Cheatsheet学习笔记
人工智能·机器学习
fantasy_arch6 小时前
transformer-注意力评分函数
人工智能·深度学习·transformer
逐云者1236 小时前
自动驾驶强化学习的价值对齐:奖励函数设计的艺术与科学
人工智能·机器学习·自动驾驶·自动驾驶奖励函数·奖励函数黑客防范·智能驾驶价值对齐
BreezeJuvenile6 小时前
深度学习实验一之图像特征提取和深度学习训练数据标注
人工智能·深度学习