数电学习笔记——逻辑函数的代数法化简

目录

逻辑函数的化简原则

与或逻辑的化简

1、吸收律(1) ( AB+AB'=A)

[2、吸收律(2)(3)( A+AB=A;A+A'B=A+B)](#2、吸收律(2)(3)( A+AB=A;A+A'B=A+B))

[3、多余项定律( AB+A'C+BC=AB+A'C)](#3、多余项定律( AB+A'C+BC=AB+A'C))

4、拆项法

5、添项法


逻辑函数的化简原则

(1)逻辑函数所用的门最少

(2)各个门的输入端要少

(3)逻辑电路所用的级数要少

(4)逻辑电路能可靠地工作

与或逻辑的化简

1、吸收律(1) ( AB+AB'=A)

例1:化简 F=AB+CD+AB'+C'D

利用公式,可得:F=A+D。(AB和AB',CD和C'D是相邻项 )

例2:化简F=A(BC')'+AB'C'

得:F=A。

2、吸收律(2)(3)( A+AB=A;A+A'B=A+B)

若某式中存在单因子项,则包含该单因子的其他项为多余项,可消去。此法应用非常多,应熟练掌握。

例1:化简F=B'+AB+AB'CD

此例题的B'为单因子项,AB'CD为包含单因子项的多余项,故可以消去AB'CD。

那么式子会变成:

F=B'+AB

=B'+A

例2:用整体法,可将复杂的式子看作是单因子项。

F=AC'+ABC'D(E+F)

令A'C=G

F=G+GBD'(E+F)

=G

=AC'

3、多余项定律( AB+A'C+BC=AB+A'C)

例1:化简F=AB+A'CD+BCDE

=AB+A'CD

例2:化简F=ABC'+(AC')'D+BD

=ABC'+(AC')'D

有时为了消去某些因子,会有意加上多余项,将函数化简后,再将其消去。

例3:化简F=AC+A'D+B'D+BC'

=AC+BC'+(A'+B')D

利用求反律A'+B'=(AB)',再加上多余项AB

得 F=AC+A'D+(AB)'D+AB

利用吸收律(3)A+A'B=A+B,得

=AC+BC'+D+AB

这时去掉多余项AB,得

=AC+BC'+D

4、拆项法

本质是利用公式A+A'=1去化简原本已经无法化简的式子。

例1:化简F=AB'+BC'+B'C+A'B

=AB'+BC'+B'C(A+A')+A'B(C+C')

=AB'+BC'+AB'C+A'B'C+A'BC+A'BC'

=AB'+A'C+BC'

5、添项法

本质是利用公式AA'=0去化简原本已经无法化简的式子。

例1:化简F=ABC'+(ABC)'*(AB)'

=AB(AB)'+ABC'+(ABC)'*(AB)'

=AB((AB)'+C')+(ABC)'*(AB)'

=AB(ABC)'+(ABC)'*(AB)'

=(ABC)'

若文章内容出现错误,恳请各位批评指正,感激不尽!

相关推荐
_落纸2 天前
三大基础无源电子元件——电阻(R)、电感(L)、电容(C)
笔记
Alice-YUE2 天前
【CSS学习笔记3】css特性
前端·css·笔记·html
2303_Alpha2 天前
SpringBoot
笔记·学习
Hello_Embed2 天前
STM32HAL 快速入门(二十):UART 中断改进 —— 环形缓冲区解决数据丢失
笔记·stm32·单片机·学习·嵌入式软件
咸甜适中2 天前
rust语言 (1.88) 学习笔记:客户端和服务器端同在一个项目中
笔记·学习·rust
Grassto2 天前
RAG 从入门到放弃?丐版 demo 实战笔记(go+python)
笔记
Magnetic_h2 天前
【iOS】设计模式复习
笔记·学习·ios·设计模式·objective-c·cocoa
周周记笔记2 天前
学习笔记:第一个Python程序
笔记·学习
丑小鸭是白天鹅2 天前
Kotlin协程详细笔记之切线程和挂起函数
开发语言·笔记·kotlin
潘达斯奈基~2 天前
《大数据之路1》笔记2:数据模型
大数据·笔记