淘宝购物数据分析(桑吉图制作)

python 复制代码
import pandas as pd
import numpy as np
import pandas as pd
import matplotlib as  mpl
from matplotlib import pyplot as plt
import seaborn as sns
import warnings
import matplotlib.dates as mdates
from pyecharts import options as opts
from pyecharts.charts import Funnel
from pyecharts.faker import Faker
from datetime import timedelta
from pyecharts.globals import CurrentConfig, OnlineHostType
from pyecharts import options as opts  # 图形设置
from pyecharts.charts import Sankey    # 导入桑基图型的类
from pyecharts.globals import ThemeType
from IPython.display import display, IFrame

# 去除warning提醒
warnings.filterwarnings('ignore')


# 用来显示中文标签
mpl.rcParams["font.family"] = "SimHei"
# 用来显示负号
mpl.rcParams["axes.unicode_minus"] = False
python 复制代码
#读取数据集
data=pd.read_csv('D:  ')

# 使用shape属性获取行数
num_rows = data.shape[0]
print(num_rows)
python 复制代码
# 查看是否存在重复的行数据
(data.duplicated()).sum()

#删除重复行
data_del_chongfu=data.drop_duplicates()
python 复制代码
#查看列中是否存在缺失值数据
data.isnull().any(axis=0)#返回true证明有缺失数据,false:没有缺失数据
python 复制代码
re_buy1=data[data.behavior_type==4].groupby('user_id')['time'].apply(lambda x:len(x.unique()))
re_buy2=re_buy1[re_buy1>=2].count()/re_buy1.count()
re_buy2

漏斗图:

python 复制代码
#漏斗分析:用户"浏览-收藏-加购-购买"的转化率是怎样的?哪一步的折损比例最大?
#用户行为转化漏斗图
pv_users = data[data.behavior_type == 1]['user_id'].count()
fav_users = data[data.behavior_type== 2]['user_id'].count()
cart_users = data[data.behavior_type== 3]['user_id'].count()
buy_users = data[data.behavior_type == 4]['user_id'].count()
attr = ['浏览', '收藏', '加购物车', '购买']
#####1:浏览pv 2:收藏fav 3:加购物车cart 4:购买buy
values = [np.around((pv_users / pv_users * 100), 2),
         np.around((cart_users / pv_users * 100), 2),
         np.around((fav_users / pv_users * 100), 2),
         np.around((buy_users / pv_users * 100), 2)]

c = (
    Funnel()
    .add(
        series_name="环节",
        data_pair=[list(z) for z in zip(attr,values)],
        sort_="descending", # 数据排序显示顺序为降序
        label_opts=opts.LabelOpts(font_size=13,position="right",formatter="{b}"),
    )
    .set_global_opts(title_opts=opts.TitleOpts(title="用户行为转化漏斗",subtitle="图中的比例表示该行为下的总行为次数占浏览行为总次数的比例"))
    
)
c.render_notebook()
c.render("chart.html")
display(IFrame(src="./chart.html", width="100%", height="500px"))
python 复制代码
# 使用空格分隔一列数据为两列
data[['time_1', 'time_2']] = data['time'].str.split(' ', 1, expand=True)
data.head(1)

折线图:

python 复制代码
# 绘制折线图
# 14年11月与12月的购买量变化趋势
data_buy=data[data.behavior_type==4]
value_counts = data_buy['time_1'].value_counts()

df = pd.DataFrame({'time': value_counts.index, 'count': value_counts.values})
df = df.sort_values('time', ascending=True)
x=df['time']
y=df['count']
fig, ax = plt.subplots(figsize=(20,8),dpi=100)
ax.plot(x,y)
# 添加标题和标签
ax.set_title("14年11月与12月的购买量变化趋势",fontsize=22)
ax.set_xlabel("时间",fontsize=18)
ax.set_ylabel("购买量",fontsize=18)
ax.xaxis.set_tick_params(rotation=90)
# 添加网格线
plt.grid(True)
# 显示图表
plt.show()
python 复制代码
# 绘制折线图
# 一天中的购买量变化趋势
data_buy=data[data.behavior_type==4]
value_counts = data_buy['time_2'].value_counts()
value_counts
df = pd.DataFrame({'time': value_counts.index, 'count': value_counts.values})
df = df.sort_values('time', ascending=True)
x=df['time']
y=df['count']
fig, ax = plt.subplots(figsize=(20,8),dpi=100)
ax.plot(x,y)
# 添加标题和标签
ax.set_title("一天中的购买量变化趋势",fontsize=22)
ax.set_xlabel("时间",fontsize=18)
ax.set_ylabel("购买量",fontsize=18)
ax.xaxis.set_tick_params(rotation=90)
# 添加网格线
plt.grid(True)
# 显示图表
plt.show()

桑基图:

python 复制代码
# 浏览总数:
data_1=data[data.behavior_type==1]
value_counts = data_1['item_id'].value_counts()
df_1 = pd.DataFrame({'item_id': value_counts.index, 'count': value_counts.values})
pv = df_1['count'].shape[0]
pv
#收藏总数
data_2=data[data.behavior_type==2]
value_counts = data_2['item_id'].value_counts()
df_2 = pd.DataFrame({'item_id': value_counts.index, 'count': value_counts.values})
fav = df_2['count'].sum()
fav
# 浏览+收藏总数
merged = pd.merge(df_1['item_id'], df_2['item_id'], how='inner')
pv_fav = merged.shape[0]
pv_fav
# 浏览+非收藏总数
pv_unfav=pv-pv_fav
pv_unfav
# 加购总数
data_3=data[data.behavior_type==3]
value_counts = data_3['item_id'].value_counts()
df_3 = pd.DataFrame({'item_id': value_counts.index, 'count': value_counts.values})
cart = df_3['count'].shape[0]#加购总数
cart

merged = pd.merge(df_1['item_id'], df_2['item_id'], how='inner')
merged1= pd.merge(merged, df_3['item_id'], how='inner')

pv_fav_cart = merged1.shape[0]
pv_fav_cart#收藏后进行加购的总数
# 浏览+收藏+非加购
pv_fav_uncart=pv_fav-pv_fav_cart
pv_fav_uncart
# 购买总数
data_4=data[data.behavior_type==4]
value_counts = data_4['item_id'].value_counts()
df_4 = pd.DataFrame({'item_id': value_counts.index, 'count': value_counts.values})
buy = df_4['count'].shape[0]#购买总数
buy
# 浏览+收藏+加购+购买  
merged = pd.merge(df_1['item_id'], df_2['item_id'], how='inner')
merged1= pd.merge(merged, df_3['item_id'], how='inner')
merged2= pd.merge(merged1, df_4['item_id'], how='inner')
pv_fav_cart_buy = merged1.shape[0]
pv_fav_cart_buy
# 浏览+收藏+加购+非购买  
pv_fav_cart_unbuy=pv_fav_cart-pv_fav_cart_buy
pv_fav_cart_unbuy
# 浏览+收藏
merged = pd.merge(df_1['item_id'], df_2['item_id'], how='inner')
# 浏览+收藏+非加购
# 使用 merge() 函数合并两个 DataFrame,并根据两列进行比较
merged = pd.merge(merged, df_3, left_on='item_id', right_on='item_id', how='outer')
count_nan = merged['count'].isna().sum()
count_nan
merged2= pd.merge(merged['item_id'], df_4['item_id'], how='inner')
pv_fav_uncart_buy = merged2.shape[0]
pv_fav_uncart_buy
# 浏览+收藏+非加购+非购买
pv_fav_uncart_unbuy=pv_fav_uncart-pv_fav_uncart_buy
pv_fav_uncart_unbuy
# 浏览+非收藏
merged=df_1[~df_1['item_id'].isin(df_2['item_id'])]
pv_unfav = merged.shape[0]
pv_unfav
# 浏览+非收藏+加购
merged2= pd.merge(merged['item_id'], df_3['item_id'], how='inner')
pv_unfav_cart = merged2.shape[0]
pv_unfav_cart
# 浏览+非收藏+非加购
pv_unfav_uncart=pv_unfav-pv_unfav_cart
pv_unfav_uncart
# 浏览+非收藏+加购+购买
merged3= pd.merge(merged2['item_id'], df_4['item_id'], how='inner')
pv_unfav_cart_buy = merged3.shape[0]
pv_unfav_cart_buy
# 浏览+非收藏+加购+非购买
pv_unfav_cart_unbuy=pv_unfav_cart-pv_unfav_cart_buy
pv_unfav_cart_unbuy
# 浏览+非收藏
merged=df_1[~df_1['item_id'].isin(df_2['item_id'])]

# 浏览+非收藏+非加购
merged2=merged[~merged['item_id'].isin(df_3['item_id'])]

pv_unfav_uncart = merged2.shape[0]
pv_unfav_uncart
# 浏览+非收藏+非加购+购买
merged3 = pd.merge(merged2, df_4['item_id'], how='inner')
pv_unfav_cart_buy = merged3.shape[0]
pv_unfav_cart_buy
pv_unfav_uncart_unbuy=pv_unfav_uncart-pv_unfav_cart_buy
pv_unfav_uncart_unbuy
python 复制代码
sangji_data=pd.DataFrame({'父类': ['pv', 'pv', '1-fav','1-fav','0-unfav','0-unfav','11-cart','11-cart','10-uncart','10-uncart','01-cart','01-cart','00-uncart','00-uncart'],
                   '子类': ['1-fav','0-unfav','11-cart' ,'10-uncart','01-cart','00-uncart','111-buy','110-unbuy','101-buy','100-unbuy','011-buy','010-unbuy','001-buy','000-unbuy'],
                   '数量': [204117, 2666487, 38710,165407,208467,2458020,38710,0,67623, 97784,47210,161257,22707,2410810]})
sangji_data

确定全部节点nodes

1、先找出全部的节点
所有的节点数据就是上面的父类和子类中去重后的元素,我们使用集合​​set​​进行去重,再转成列表
python 复制代码
# 父类+子类中的数据,需要去重
sangji_data['父类'].tolist()
sangji_data['子类'].tolist()
python 复制代码
# 将上面的数据相加并且去重:
nodes=list(set(sangji_data['父类'].tolist()+sangji_data['子类'].tolist()))
nodes
2、生成节点数据
python 复制代码
# 节点列表数据: nodes_list
nodes_list=[]
for i in nodes:
    dic={}
    dic["name"]=i
    nodes_list.append(dic)
nodes_list
生成链路数据
我们将导入的数据生成链路数据:每一行记录都是一个链路数据:
python 复制代码
links_list=[]
for i in range(len(sangji_data)):
    dic={}
    dic['source']=sangji_data.iloc[i,0]#父类
    dic['target']=sangji_data.iloc[i,1]#子类
    dic['value']=int(sangji_data.iloc[i,2])#数据值:使用int函数直接强制转换
    links_list.append(dic)
links_list
完成了桑葚图中节点数据和链路数据的生成,下面开始绘图
python 复制代码
c = (
    Sankey()
    .add(
        "用户行为",
        nodes_list,
        links_list,
        linestyle_opt=opts.LineStyleOpts(opacity=0.5,curve=0.5, color="source"),
        label_opts=opts.LabelOpts(position="right"),
    )
    .set_global_opts(title_opts=opts.TitleOpts(title="用户行为路径"))
)
c.render_notebook()
c.render("chart2.html")
display(IFrame(src="./chart2.html", width="100%", height="500px"))
相关推荐
taxunjishu1 小时前
DeviceNet 转 Modbus TCP 协议转换在 S7-1200 PLC化工反应釜中的应用
运维·人工智能·物联网·自动化·区块链
kalvin_y_liu1 小时前
智能体框架大PK!谷歌ADK VS 微软Semantic Kernel
人工智能·microsoft·谷歌·智能体
爱看科技1 小时前
智能眼镜行业腾飞在即,苹果/微美全息锚定“AR+AI眼镜融合”之路抢滩市场!
人工智能·ar
非极限码农3 小时前
Neo4j图数据库上手指南
大数据·数据库·数据分析·neo4j
咋吃都不胖lyh4 小时前
SQL-多对多关系
android·mysql·数据分析
Juchecar4 小时前
LLM模型与ML算法之间的关系
人工智能
FIN66684 小时前
昂瑞微:深耕射频“芯”赛道以硬核实力冲刺科创板大门
前端·人工智能·科技·前端框架·信息与通信·智能
benben0444 小时前
京东agent之joyagent解读
人工智能
LONGZETECH4 小时前
【龙泽科技】汽车动力与驱动系统综合分析技术1+X仿真教学软件(1.1.3 -初级)
人工智能·科技·汽车·汽车仿真教学软件·汽车教学软件
lisw055 小时前
SolidWorks:现代工程设计与数字制造的核心平台
人工智能·机器学习·青少年编程·软件工程·制造