LLM(大语言模型)常用评测指标-MAP

MAP (Mean Average Precision)

MAP (平均平均精度) 是一种常用于评估信息检索系统、推荐系统或其他排名模型的性能指标。它特别适用于任务中涉及到返回一组排序结果的场景,如搜索引擎、推荐系统、图像检索等。

计算方法

  1. 计算平均精度 (Average Precision, AP):对于每个查询,首先计算其精度(Precision)在不同截断级别(即不同数量的返回结果)的值,然后计算这些精度值的平均值。精度是指检索到的相关文档数量与检索到的总文档数量的比值。
  2. 计算平均精度的平均值 (Mean AP):对所有查询的平均精度(AP)进行平均。

应用场景

MAP常用于评估搜索引擎、推荐系统、文本检索、图像检索等领域中的模型性能,尤其是在关注排名顶部结果的精确性时。

计算实例

假设有一个推荐系统,它针对两个不同的用户返回了以下推荐结果(这里的"相关"和"不相关"是基于用户偏好预先定义的):

  • 用户 1:
    • 推荐结果:[相关, 不相关, 相关, 不相关, 相关]
  • 用户 2:
    • 推荐结果:[相关, 相关, 不相关, 相关, 不相关]

步骤

  1. 计算每个用户的平均精度 (AP):

    • 对于用户 1:

      • 第一个相关结果的精度 = 1/1
      • 第二个相关结果的精度 = 2/3
      • 第三个相关结果的精度 = 3/5
      • AP1 = (1/1 + 2/3 + 3/5) / 3 = 0.867
    • 对于用户 2:

      • 第一个相关结果的精度 = 1/1
      • 第二个相关结果的精度 = 2/2
      • 第三个相关结果的精度 = 3/4
      • AP2 = (1/1 + 2/2 + 3/4) / 3 = 0.917
  2. 计算 MAP:

    • MAP = (AP1 + AP2) / 2 = (0.867 + 0.917) / 2 = 0.892

因此,在这个例子中,MAP的值是0.892。这意味着在所有返回结果中,模型在这两个用户上的平均表现接近于89.2%的准确率。在实际应用中,通常会对大量用户或查询进行此类计算,以得到更为可靠的平均值。

相关推荐
七牛云行业应用6 小时前
深度解析强化学习(RL):原理、算法与金融应用
人工智能·算法·金融
说私域7 小时前
“开源AI智能名片链动2+1模式S2B2C商城小程序”在直播公屏引流中的应用与效果
人工智能·小程序·开源
Hcoco_me7 小时前
深度学习和神经网络之间有什么区别?
人工智能·深度学习·神经网络
霍格沃兹_测试7 小时前
Ollama + Python 极简工作流
人工智能
资源开发与学习7 小时前
AI智时代:一节课带你玩转 Cursor,开启快速入门与实战之旅
人工智能
西安光锐软件7 小时前
深度学习之损失函数
人工智能·深度学习
补三补四7 小时前
LSTM 深度解析:从门控机制到实际应用
人工智能·rnn·lstm
astragin7 小时前
神经网络常见层速查表
人工智能·深度学习·神经网络
嘀咕博客8 小时前
文心快码Comate - 百度推出的AI编码助手
人工智能·百度·ai工具
cyyt8 小时前
深度学习周报(9.8~9.14)
人工智能·深度学习