LLM(大语言模型)常用评测指标-MAP

MAP (Mean Average Precision)

MAP (平均平均精度) 是一种常用于评估信息检索系统、推荐系统或其他排名模型的性能指标。它特别适用于任务中涉及到返回一组排序结果的场景,如搜索引擎、推荐系统、图像检索等。

计算方法

  1. 计算平均精度 (Average Precision, AP):对于每个查询,首先计算其精度(Precision)在不同截断级别(即不同数量的返回结果)的值,然后计算这些精度值的平均值。精度是指检索到的相关文档数量与检索到的总文档数量的比值。
  2. 计算平均精度的平均值 (Mean AP):对所有查询的平均精度(AP)进行平均。

应用场景

MAP常用于评估搜索引擎、推荐系统、文本检索、图像检索等领域中的模型性能,尤其是在关注排名顶部结果的精确性时。

计算实例

假设有一个推荐系统,它针对两个不同的用户返回了以下推荐结果(这里的"相关"和"不相关"是基于用户偏好预先定义的):

  • 用户 1:
    • 推荐结果:[相关, 不相关, 相关, 不相关, 相关]
  • 用户 2:
    • 推荐结果:[相关, 相关, 不相关, 相关, 不相关]

步骤

  1. 计算每个用户的平均精度 (AP):

    • 对于用户 1:

      • 第一个相关结果的精度 = 1/1
      • 第二个相关结果的精度 = 2/3
      • 第三个相关结果的精度 = 3/5
      • AP1 = (1/1 + 2/3 + 3/5) / 3 = 0.867
    • 对于用户 2:

      • 第一个相关结果的精度 = 1/1
      • 第二个相关结果的精度 = 2/2
      • 第三个相关结果的精度 = 3/4
      • AP2 = (1/1 + 2/2 + 3/4) / 3 = 0.917
  2. 计算 MAP:

    • MAP = (AP1 + AP2) / 2 = (0.867 + 0.917) / 2 = 0.892

因此,在这个例子中,MAP的值是0.892。这意味着在所有返回结果中,模型在这两个用户上的平均表现接近于89.2%的准确率。在实际应用中,通常会对大量用户或查询进行此类计算,以得到更为可靠的平均值。

相关推荐
Wnq100724 小时前
世界模型 AI:认知跃迁的可行性与本质性挑战
人工智能
穷人小水滴4 小时前
科幻 「备用肉身虫」 系列设定集 (AI 摘要)
人工智能·aigc·科幻·未来·小说·设定
老赵聊算法、大模型备案4 小时前
北京市生成式人工智能服务已备案信息公告(2025年12月11日)
人工智能·算法·安全·aigc
咬人喵喵4 小时前
上下文窗口:AI 的“大脑容量”
人工智能
workflower4 小时前
时序数据获取事件
开发语言·人工智能·python·深度学习·机器学习·结对编程
weixin_446122464 小时前
一个案例验证 LLM大模型编码能力哪家强
人工智能
老蒋新思维5 小时前
创客匠人峰会深度解析:知识变现的 “信任 - 效率” 双闭环 —— 从 “单次交易” 到 “终身复购” 的增长密码
大数据·网络·人工智能·tcp/ip·重构·数据挖掘·创客匠人
java1234_小锋5 小时前
Transformer 大语言模型(LLM)基石 - Transformer架构详解 - 编码器(Encoder)详解以及算法实现
深度学习·语言模型·transformer
大刘讲IT5 小时前
面向中小企业的企业AI Agent未来3年构建蓝图规划
人工智能·经验分享·ai·开源·制造
yzx9910135 小时前
深度学习的进化之路:从感知机到通用智能的曙光
人工智能·深度学习