LLM(大语言模型)常用评测指标-MAP

MAP (Mean Average Precision)

MAP (平均平均精度) 是一种常用于评估信息检索系统、推荐系统或其他排名模型的性能指标。它特别适用于任务中涉及到返回一组排序结果的场景,如搜索引擎、推荐系统、图像检索等。

计算方法

  1. 计算平均精度 (Average Precision, AP):对于每个查询,首先计算其精度(Precision)在不同截断级别(即不同数量的返回结果)的值,然后计算这些精度值的平均值。精度是指检索到的相关文档数量与检索到的总文档数量的比值。
  2. 计算平均精度的平均值 (Mean AP):对所有查询的平均精度(AP)进行平均。

应用场景

MAP常用于评估搜索引擎、推荐系统、文本检索、图像检索等领域中的模型性能,尤其是在关注排名顶部结果的精确性时。

计算实例

假设有一个推荐系统,它针对两个不同的用户返回了以下推荐结果(这里的"相关"和"不相关"是基于用户偏好预先定义的):

  • 用户 1:
    • 推荐结果:[相关, 不相关, 相关, 不相关, 相关]
  • 用户 2:
    • 推荐结果:[相关, 相关, 不相关, 相关, 不相关]

步骤

  1. 计算每个用户的平均精度 (AP):

    • 对于用户 1:

      • 第一个相关结果的精度 = 1/1
      • 第二个相关结果的精度 = 2/3
      • 第三个相关结果的精度 = 3/5
      • AP1 = (1/1 + 2/3 + 3/5) / 3 = 0.867
    • 对于用户 2:

      • 第一个相关结果的精度 = 1/1
      • 第二个相关结果的精度 = 2/2
      • 第三个相关结果的精度 = 3/4
      • AP2 = (1/1 + 2/2 + 3/4) / 3 = 0.917
  2. 计算 MAP:

    • MAP = (AP1 + AP2) / 2 = (0.867 + 0.917) / 2 = 0.892

因此,在这个例子中,MAP的值是0.892。这意味着在所有返回结果中,模型在这两个用户上的平均表现接近于89.2%的准确率。在实际应用中,通常会对大量用户或查询进行此类计算,以得到更为可靠的平均值。

相关推荐
h64648564h10 分钟前
CANN 性能剖析与调优全指南:从 Profiling 到 Kernel 级优化
人工智能·深度学习
数据与后端架构提升之路12 分钟前
论系统安全架构设计及其应用(基于AI大模型项目)
人工智能·安全·系统安全
忆~遂愿15 分钟前
ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
java·大数据·linux·人工智能
Liue6123123120 分钟前
YOLO11-C3k2-MBRConv3改进提升金属表面缺陷检测与分类性能_焊接裂纹气孔飞溅物焊接线识别
人工智能·分类·数据挖掘
一切尽在,你来28 分钟前
第二章 预告内容
人工智能·langchain·ai编程
23遇见31 分钟前
基于 CANN 框架的 AI 加速:ops-nn 仓库的关键技术解读
人工智能
Codebee40 分钟前
OoderAgent 企业版 2.0 发布的意义:一次生态战略的全面升级
人工智能
光泽雨1 小时前
检测阈值 匹配阈值分析 金字塔
图像处理·人工智能·计算机视觉·机器视觉·smart3
Σίσυφος19001 小时前
PCL 法向量估计-PCA邻域点(经典 kNN 协方差)的协方差矩阵
人工智能·线性代数·矩阵
小鸡吃米…2 小时前
机器学习的商业化变现
人工智能·机器学习