LLM(大语言模型)常用评测指标-MAP

MAP (Mean Average Precision)

MAP (平均平均精度) 是一种常用于评估信息检索系统、推荐系统或其他排名模型的性能指标。它特别适用于任务中涉及到返回一组排序结果的场景,如搜索引擎、推荐系统、图像检索等。

计算方法

  1. 计算平均精度 (Average Precision, AP):对于每个查询,首先计算其精度(Precision)在不同截断级别(即不同数量的返回结果)的值,然后计算这些精度值的平均值。精度是指检索到的相关文档数量与检索到的总文档数量的比值。
  2. 计算平均精度的平均值 (Mean AP):对所有查询的平均精度(AP)进行平均。

应用场景

MAP常用于评估搜索引擎、推荐系统、文本检索、图像检索等领域中的模型性能,尤其是在关注排名顶部结果的精确性时。

计算实例

假设有一个推荐系统,它针对两个不同的用户返回了以下推荐结果(这里的"相关"和"不相关"是基于用户偏好预先定义的):

  • 用户 1:
    • 推荐结果:[相关, 不相关, 相关, 不相关, 相关]
  • 用户 2:
    • 推荐结果:[相关, 相关, 不相关, 相关, 不相关]

步骤

  1. 计算每个用户的平均精度 (AP):

    • 对于用户 1:

      • 第一个相关结果的精度 = 1/1
      • 第二个相关结果的精度 = 2/3
      • 第三个相关结果的精度 = 3/5
      • AP1 = (1/1 + 2/3 + 3/5) / 3 = 0.867
    • 对于用户 2:

      • 第一个相关结果的精度 = 1/1
      • 第二个相关结果的精度 = 2/2
      • 第三个相关结果的精度 = 3/4
      • AP2 = (1/1 + 2/2 + 3/4) / 3 = 0.917
  2. 计算 MAP:

    • MAP = (AP1 + AP2) / 2 = (0.867 + 0.917) / 2 = 0.892

因此,在这个例子中,MAP的值是0.892。这意味着在所有返回结果中,模型在这两个用户上的平均表现接近于89.2%的准确率。在实际应用中,通常会对大量用户或查询进行此类计算,以得到更为可靠的平均值。

相关推荐
源创力环形导轨21 小时前
环形导轨:自动化生产线的核心传输解决方案
运维·人工智能·自动化
不会飞的鲨鱼21 小时前
腾讯录音文件语音识别 python api接口
人工智能·python·语音识别
wengad21 小时前
豆包的深入研究的浅析-应用于股市投顾
人工智能
KdanMin21 小时前
“日志抓不到”到“全链路可追溯”:一次 Android 系统级日志体系的工程化实践
大数据·人工智能
apocalypsx21 小时前
深度学习-使用块的网络VGG
人工智能·深度学习
陈天伟教授21 小时前
人工智能应用-机器视觉:AI 鉴伪 07.虚假图片鉴别
人工智能·神经网络·数码相机·生成对抗网络·dnn
珠海西格电力21 小时前
零碳园区如何实现能源互联
大数据·人工智能·物联网·架构·能源
东方佑21 小时前
SamOut 架构数学证明:cusmax + 卷积 vs Softmax 注意力
人工智能
小程故事多_8021 小时前
从14.3%到94.3%,破解Agent联网搜索“噪声致幻”的核心密码
人工智能·aigc
BFT白芙堂21 小时前
游戏化机器人数据采集:以Franka Research 3为核心的RoboCade创新实践
人工智能·深度学习·机器学习·机器人·具身智能·franka