LLM(大语言模型)常用评测指标-MAP

MAP (Mean Average Precision)

MAP (平均平均精度) 是一种常用于评估信息检索系统、推荐系统或其他排名模型的性能指标。它特别适用于任务中涉及到返回一组排序结果的场景,如搜索引擎、推荐系统、图像检索等。

计算方法

  1. 计算平均精度 (Average Precision, AP):对于每个查询,首先计算其精度(Precision)在不同截断级别(即不同数量的返回结果)的值,然后计算这些精度值的平均值。精度是指检索到的相关文档数量与检索到的总文档数量的比值。
  2. 计算平均精度的平均值 (Mean AP):对所有查询的平均精度(AP)进行平均。

应用场景

MAP常用于评估搜索引擎、推荐系统、文本检索、图像检索等领域中的模型性能,尤其是在关注排名顶部结果的精确性时。

计算实例

假设有一个推荐系统,它针对两个不同的用户返回了以下推荐结果(这里的"相关"和"不相关"是基于用户偏好预先定义的):

  • 用户 1:
    • 推荐结果:[相关, 不相关, 相关, 不相关, 相关]
  • 用户 2:
    • 推荐结果:[相关, 相关, 不相关, 相关, 不相关]

步骤

  1. 计算每个用户的平均精度 (AP):

    • 对于用户 1:

      • 第一个相关结果的精度 = 1/1
      • 第二个相关结果的精度 = 2/3
      • 第三个相关结果的精度 = 3/5
      • AP1 = (1/1 + 2/3 + 3/5) / 3 = 0.867
    • 对于用户 2:

      • 第一个相关结果的精度 = 1/1
      • 第二个相关结果的精度 = 2/2
      • 第三个相关结果的精度 = 3/4
      • AP2 = (1/1 + 2/2 + 3/4) / 3 = 0.917
  2. 计算 MAP:

    • MAP = (AP1 + AP2) / 2 = (0.867 + 0.917) / 2 = 0.892

因此,在这个例子中,MAP的值是0.892。这意味着在所有返回结果中,模型在这两个用户上的平均表现接近于89.2%的准确率。在实际应用中,通常会对大量用户或查询进行此类计算,以得到更为可靠的平均值。

相关推荐
补三补四20 分钟前
k近邻算法K-Nearest Neighbors(KNN)
人工智能·机器学习
AI绘画月月22 分钟前
AI绘画 | Stable Diffusion 图片背景完美替换
图像处理·人工智能·计算机视觉·ai作画·stable diffusion·midjourney·sd
阿里云大数据AI技术24 分钟前
阿里云 AI 搜索开放平台新发布:增加 QwQ 模型
人工智能·云计算
Toky丶27 分钟前
【文献阅读】Vision-Language Models for Vision Tasks: A Survey
人工智能·语言模型·自然语言处理
小白狮ww32 分钟前
Retinex 算法 + MATLAB 软件,高效率完成图像去雾处理
开发语言·人工智能·算法·matlab·自然语言处理·图像识别·去雾处理
掘金安东尼39 分钟前
用 Python 搭桥,Slack 上跑起来的 MCP 数字员工
人工智能·面试·github
skywalk816343 分钟前
体验智谱清言的AutoGLM进行自动化的操作(Chrome插件)
运维·人工智能·自动化·glm·autoglm
Chaos_Wang_1 小时前
NLP高频面试题(三十)——LLama系列模型介绍,包括LLama LLama2和LLama3
人工智能·自然语言处理·llama
新智元1 小时前
美国 CS 专业卷上天,满分学霸惨遭藤校全拒!父亲大受震撼引爆热议
人工智能·openai