图机器学习(3)-面向节点的人工特征工程

0 问题引入

地铁导航图




计算机是看不懂这些图,计算机只能看懂向量、矩阵。

传统图机器学习只讨论连接特征。

问题:1、4象限是一类,2、3象限是一类,如何构建分类器?

构造一个新的特征 x 1 x 2 x_1x_2 x1x2,有利于分开这种数据。

问题:好的数据才能得到好的结果,如何对节点、连接、全图去构造一些新的特征?

很多重要的比赛,大部分时间不是在怎么构造网络、调参,而是在如何清洗数据,如何根据应用场景进行特征提取,获取新的特征。

人需要去翻译这些计算机不懂的特征,变成计算机可以懂的向量、矩阵。为了简化,我们聚焦无向图

1 节点层面的特征工程

关键的问题是构造好D维特征。

半监督:由已知节点的连接去猜未知节点的连接。

节点的度;

节点重要度;

节点的抱团系数(聚集系数);

子图模式。

1.1 节点连接数

A和G的节点度都是1,但连接的质量不同。

节点的重要度。

1.2 节点重要度


相关推荐
新知图书5 小时前
FastGPT简介
人工智能·ai agent·智能体·大模型应用开发·大模型应用
Dev7z5 小时前
基于Matlab卷积神经网络的交通警察手势识别方法研究与实现
人工智能·神经网络·cnn
元拓数智6 小时前
IntaLink:破解数仓建设痛点,重塑高效建设新范式
大数据·数据仓库·人工智能·数据关系·intalink
区块链小八歌6 小时前
从电商收入到链上资产:Liquid Royalty在 Berachain 重塑 RWA 想象力
大数据·人工智能·区块链
沃达德软件6 小时前
大数据反诈平台功能解析
大数据·人工智能
OAoffice6 小时前
智能学习培训考试平台如何驱动未来组织:重塑人才发展格局
人工智能·学习·企业智能学习考试平台·学练考一体化平台
岁月宁静6 小时前
LangChain + LangGraph 实战:构建生产级多模态 WorkflowAgent 的完整指南
人工智能·python·agent
Java中文社群6 小时前
重磅!N8N新版2.0发布!不再支持MySQL?
人工智能
梯度下降不了班7 小时前
【mmodel/xDit】Cross-Attention 深度解析:文生图/文生视频的核心桥梁
人工智能·深度学习·ai作画·stable diffusion·音视频·transformer