图机器学习(3)-面向节点的人工特征工程

0 问题引入

地铁导航图




计算机是看不懂这些图,计算机只能看懂向量、矩阵。

传统图机器学习只讨论连接特征。

问题:1、4象限是一类,2、3象限是一类,如何构建分类器?

构造一个新的特征 x 1 x 2 x_1x_2 x1x2,有利于分开这种数据。

问题:好的数据才能得到好的结果,如何对节点、连接、全图去构造一些新的特征?

很多重要的比赛,大部分时间不是在怎么构造网络、调参,而是在如何清洗数据,如何根据应用场景进行特征提取,获取新的特征。

人需要去翻译这些计算机不懂的特征,变成计算机可以懂的向量、矩阵。为了简化,我们聚焦无向图

1 节点层面的特征工程

关键的问题是构造好D维特征。

半监督:由已知节点的连接去猜未知节点的连接。

节点的度;

节点重要度;

节点的抱团系数(聚集系数);

子图模式。

1.1 节点连接数

A和G的节点度都是1,但连接的质量不同。

节点的重要度。

1.2 节点重要度


相关推荐
weixin_387545647 分钟前
深入解析 AI Gateway:新一代智能流量控制中枢
人工智能·gateway
聽雨23724 分钟前
03每日简报20250705
人工智能·社交电子·娱乐·传媒·媒体
二川bro43 分钟前
飞算智造JavaAI:智能编程革命——AI重构Java开发新范式
java·人工智能·重构
acstdm1 小时前
DAY 48 CBAM注意力
人工智能·深度学习·机器学习
澪-sl1 小时前
基于CNN的人脸关键点检测
人工智能·深度学习·神经网络·计算机视觉·cnn·视觉检测·卷积神经网络
羊小猪~~1 小时前
数据库学习笔记(十七)--触发器的使用
数据库·人工智能·后端·sql·深度学习·mysql·考研
摸爬滚打李上进2 小时前
重生学AI第十六集:线性层nn.Linear
人工智能·pytorch·python·神经网络·机器学习
HuashuiMu花水木2 小时前
PyTorch笔记1----------Tensor(张量):基本概念、创建、属性、算数运算
人工智能·pytorch·笔记
lishaoan772 小时前
使用tensorflow的线性回归的例子(四)
人工智能·tensorflow·线性回归
AI让世界更懂你2 小时前
【ACL系列论文写作指北15-如何进行reveiw】-公平、公正、公开
人工智能·自然语言处理