张量维度改变总结

文章目录


一、view() 或 reshape()

view() 或 reshape(): 这两个函数可以用于改变张量的形状,但保持元素总数不变。它们可以接受一个新的形状作为参数,并返回一个新的张量。例如:

python 复制代码
import torch

x = torch.randn(2, 3, 4)  # 创建一个形状为 [2, 3, 4] 的张量

x_viewed = x.view(2, 12)  # 改变形状为 [2, 12]
x_reshaped = x.reshape(6, 4)  # 改变形状为 [6, 4]

二、unsqueeze()

unsqueeze(): 这个函数可以在指定位置插入一个新的维度。它接受一个整数作为参数,表示要插入的位置。例如:

python 复制代码
import torch

x = torch.randn(3, 4)  # 创建一个形状为 [3, 4] 的张量

x.unsqueeze(0)  # 在第 0 个位置插入一个新的维度,形状变为 [1, 3, 4]
x.unsqueeze(1)  # 在第 1 个位置插入一个新的维度,形状变为 [3, 1, 4]
python 复制代码
import torch

x = torch.randn(2, 3)  # 创建一个形状为 [2, 3] 的张量

x_unsqueezed = torch.unsqueeze(x, dim=0)  # 在第 0 个位置插入一个新的维度,形状变为 [1, 2, 3]

三、squeeze()

squeeze(): 这个函数可以删除维度为 1 的维度。它会返回一个新的张量,其中已删除了所有维度为 1 的维度。例如:

python 复制代码
import torch

x = torch.randn(1, 3, 1, 4)  # 创建一个形状为 [1, 3, 1, 4] 的张量

x.squeeze()  # 删除所有维度为 1 的维度,形状变为 [3, 4]

四、transpose()

transpose(): 这个函数可以交换张量的维度顺序。它接受两个整数作为参数,表示要交换的维度的位置。例如:

python 复制代码
import torch

x = torch.randn(2, 3)  # 创建一个形状为 [2, 3] 的张量

x.transpose(0, 1)  # 交换维度 0 和维度 1 的位置,形状变为 [3, 2]

五、torch.expand_dims

torch.expand_dims(input, dim): 这个函数接受一个张量 input 和一个整数 dim,表示要在 dim 位置插入一个新的维度。它会返回一个新的张量,其中插入了一个维度。例如:

python 复制代码
import torch

x = torch.randn(2, 3)  # 创建一个形状为 [2, 3] 的张量

x_expanded = torch.expand_dims(x, dim=1)  # 在第 1 个位置插入一个新的维度,形状变为 [2, 1, 3]
相关推荐
rit84324993 分钟前
基于BP神经网络的语音特征信号分类
人工智能·神经网络·分类
一点.点8 分钟前
AlphaDrive:通过强化学习和推理释放自动驾驶中 VLM 的力量
人工智能·机器学习·自动驾驶
科技小E18 分钟前
口罩佩戴检测算法AI智能分析网关V4工厂/工业等多场景守护公共卫生安全
网络·人工智能
说私域23 分钟前
基于定制开发开源AI智能名片S2B2C商城小程序的首屏组件优化策略研究
人工智能·小程序·开源·零售
vlln28 分钟前
2025年与2030年AI及AI智能体 (Agent) 市场份额分析报告
人工智能·深度学习·神经网络·ai
GiantGo38 分钟前
信息最大化(Information Maximization)
深度学习·无监督学习·信息最大化
栗克1 小时前
Halcon 图像预处理②
人工智能·计算机视觉·halcon
互联网全栈架构2 小时前
遨游Spring AI:第一盘菜Hello World
java·人工智能·后端·spring
m0_465215792 小时前
大语言模型解析
人工智能·语言模型·自然语言处理
张较瘦_3 小时前
[论文阅读] 人工智能+软件工程 | 结对编程中的知识转移新图景
人工智能·软件工程·结对编程