张量维度改变总结

文章目录


一、view() 或 reshape()

view() 或 reshape(): 这两个函数可以用于改变张量的形状,但保持元素总数不变。它们可以接受一个新的形状作为参数,并返回一个新的张量。例如:

python 复制代码
import torch

x = torch.randn(2, 3, 4)  # 创建一个形状为 [2, 3, 4] 的张量

x_viewed = x.view(2, 12)  # 改变形状为 [2, 12]
x_reshaped = x.reshape(6, 4)  # 改变形状为 [6, 4]

二、unsqueeze()

unsqueeze(): 这个函数可以在指定位置插入一个新的维度。它接受一个整数作为参数,表示要插入的位置。例如:

python 复制代码
import torch

x = torch.randn(3, 4)  # 创建一个形状为 [3, 4] 的张量

x.unsqueeze(0)  # 在第 0 个位置插入一个新的维度,形状变为 [1, 3, 4]
x.unsqueeze(1)  # 在第 1 个位置插入一个新的维度,形状变为 [3, 1, 4]
python 复制代码
import torch

x = torch.randn(2, 3)  # 创建一个形状为 [2, 3] 的张量

x_unsqueezed = torch.unsqueeze(x, dim=0)  # 在第 0 个位置插入一个新的维度,形状变为 [1, 2, 3]

三、squeeze()

squeeze(): 这个函数可以删除维度为 1 的维度。它会返回一个新的张量,其中已删除了所有维度为 1 的维度。例如:

python 复制代码
import torch

x = torch.randn(1, 3, 1, 4)  # 创建一个形状为 [1, 3, 1, 4] 的张量

x.squeeze()  # 删除所有维度为 1 的维度,形状变为 [3, 4]

四、transpose()

transpose(): 这个函数可以交换张量的维度顺序。它接受两个整数作为参数,表示要交换的维度的位置。例如:

python 复制代码
import torch

x = torch.randn(2, 3)  # 创建一个形状为 [2, 3] 的张量

x.transpose(0, 1)  # 交换维度 0 和维度 1 的位置,形状变为 [3, 2]

五、torch.expand_dims

torch.expand_dims(input, dim): 这个函数接受一个张量 input 和一个整数 dim,表示要在 dim 位置插入一个新的维度。它会返回一个新的张量,其中插入了一个维度。例如:

python 复制代码
import torch

x = torch.randn(2, 3)  # 创建一个形状为 [2, 3] 的张量

x_expanded = torch.expand_dims(x, dim=1)  # 在第 1 个位置插入一个新的维度,形状变为 [2, 1, 3]
相关推荐
Elastic 中国社区官方博客3 小时前
Elasticsearch 混合搜索 - Hybrid Search
大数据·人工智能·elasticsearch·搜索引擎·ai·语言模型·全文检索
@心都3 小时前
机器学习数学基础:29.t检验
人工智能·机器学习
9命怪猫3 小时前
DeepSeek底层揭秘——微调
人工智能·深度学习·神经网络·ai·大模型
kcarly5 小时前
KTransformers如何通过内核级优化、多GPU并行策略和稀疏注意力等技术显著加速大语言模型的推理速度?
人工智能·语言模型·自然语言处理
Jackilina_Stone5 小时前
【论文阅读笔记】浅谈深度学习中的知识蒸馏 | 关系知识蒸馏 | CVPR 2019 | RKD
论文阅读·深度学习·蒸馏·rkd
倒霉蛋小马6 小时前
【YOLOv8】损失函数
深度学习·yolo·机器学习
MinIO官方账号6 小时前
使用 AIStor 和 OpenSearch 增强搜索功能
人工智能
江江江江江江江江江7 小时前
深度神经网络终极指南:从数学本质到工业级实现(附Keras版本代码)
人工智能·keras·dnn
Fansv5877 小时前
深度学习-2.机械学习基础
人工智能·经验分享·python·深度学习·算法·机器学习
小怪兽会微笑7 小时前
PyTorch Tensor 形状变化操作详解
人工智能·pytorch·python