张量维度改变总结

文章目录


一、view() 或 reshape()

view() 或 reshape(): 这两个函数可以用于改变张量的形状,但保持元素总数不变。它们可以接受一个新的形状作为参数,并返回一个新的张量。例如:

python 复制代码
import torch

x = torch.randn(2, 3, 4)  # 创建一个形状为 [2, 3, 4] 的张量

x_viewed = x.view(2, 12)  # 改变形状为 [2, 12]
x_reshaped = x.reshape(6, 4)  # 改变形状为 [6, 4]

二、unsqueeze()

unsqueeze(): 这个函数可以在指定位置插入一个新的维度。它接受一个整数作为参数,表示要插入的位置。例如:

python 复制代码
import torch

x = torch.randn(3, 4)  # 创建一个形状为 [3, 4] 的张量

x.unsqueeze(0)  # 在第 0 个位置插入一个新的维度,形状变为 [1, 3, 4]
x.unsqueeze(1)  # 在第 1 个位置插入一个新的维度,形状变为 [3, 1, 4]
python 复制代码
import torch

x = torch.randn(2, 3)  # 创建一个形状为 [2, 3] 的张量

x_unsqueezed = torch.unsqueeze(x, dim=0)  # 在第 0 个位置插入一个新的维度,形状变为 [1, 2, 3]

三、squeeze()

squeeze(): 这个函数可以删除维度为 1 的维度。它会返回一个新的张量,其中已删除了所有维度为 1 的维度。例如:

python 复制代码
import torch

x = torch.randn(1, 3, 1, 4)  # 创建一个形状为 [1, 3, 1, 4] 的张量

x.squeeze()  # 删除所有维度为 1 的维度,形状变为 [3, 4]

四、transpose()

transpose(): 这个函数可以交换张量的维度顺序。它接受两个整数作为参数,表示要交换的维度的位置。例如:

python 复制代码
import torch

x = torch.randn(2, 3)  # 创建一个形状为 [2, 3] 的张量

x.transpose(0, 1)  # 交换维度 0 和维度 1 的位置,形状变为 [3, 2]

五、torch.expand_dims

torch.expand_dims(input, dim): 这个函数接受一个张量 input 和一个整数 dim,表示要在 dim 位置插入一个新的维度。它会返回一个新的张量,其中插入了一个维度。例如:

python 复制代码
import torch

x = torch.randn(2, 3)  # 创建一个形状为 [2, 3] 的张量

x_expanded = torch.expand_dims(x, dim=1)  # 在第 1 个位置插入一个新的维度,形状变为 [2, 1, 3]
相关推荐
3Bronze1Pyramid1 小时前
【RNAErnie 大模型】
人工智能·深度学习·算法
良策金宝AI8 小时前
让端子排接线图“智能生成”,良策金宝AI推出变电站二次智能设计引擎
大数据·人工智能·工程设计·变电站ai
天云数据8 小时前
神经网络,人类表达的革命
人工智能·深度学习·神经网络·机器学习
xixixi777778 小时前
2026 年 02 月 13 日 AI 前沿、通信和安全行业日报
人工智能·安全·ai·大模型·通信·市场
独自归家的兔9 小时前
深度学习之 CNN:如何在图像数据的海洋中精准 “捕捞” 特征?
人工智能·深度学习·cnn
X54先生(人文科技)9 小时前
20260211_AdviceForTraditionalProgrammers
数据库·人工智能·ai编程
梦想画家9 小时前
数据治理5大核心概念:分清、用好,支撑AI智能化应用
人工智能·数据治理
yhdata9 小时前
锁定2032年!区熔硅单晶市场规模有望达71.51亿元,赛道前景持续向好
大数据·人工智能
deephub10 小时前
RAG 文本分块:七种主流策略的原理与适用场景
人工智能·深度学习·大语言模型·rag·检索