张量维度改变总结

文章目录


一、view() 或 reshape()

view() 或 reshape(): 这两个函数可以用于改变张量的形状,但保持元素总数不变。它们可以接受一个新的形状作为参数,并返回一个新的张量。例如:

python 复制代码
import torch

x = torch.randn(2, 3, 4)  # 创建一个形状为 [2, 3, 4] 的张量

x_viewed = x.view(2, 12)  # 改变形状为 [2, 12]
x_reshaped = x.reshape(6, 4)  # 改变形状为 [6, 4]

二、unsqueeze()

unsqueeze(): 这个函数可以在指定位置插入一个新的维度。它接受一个整数作为参数,表示要插入的位置。例如:

python 复制代码
import torch

x = torch.randn(3, 4)  # 创建一个形状为 [3, 4] 的张量

x.unsqueeze(0)  # 在第 0 个位置插入一个新的维度,形状变为 [1, 3, 4]
x.unsqueeze(1)  # 在第 1 个位置插入一个新的维度,形状变为 [3, 1, 4]
python 复制代码
import torch

x = torch.randn(2, 3)  # 创建一个形状为 [2, 3] 的张量

x_unsqueezed = torch.unsqueeze(x, dim=0)  # 在第 0 个位置插入一个新的维度,形状变为 [1, 2, 3]

三、squeeze()

squeeze(): 这个函数可以删除维度为 1 的维度。它会返回一个新的张量,其中已删除了所有维度为 1 的维度。例如:

python 复制代码
import torch

x = torch.randn(1, 3, 1, 4)  # 创建一个形状为 [1, 3, 1, 4] 的张量

x.squeeze()  # 删除所有维度为 1 的维度,形状变为 [3, 4]

四、transpose()

transpose(): 这个函数可以交换张量的维度顺序。它接受两个整数作为参数,表示要交换的维度的位置。例如:

python 复制代码
import torch

x = torch.randn(2, 3)  # 创建一个形状为 [2, 3] 的张量

x.transpose(0, 1)  # 交换维度 0 和维度 1 的位置,形状变为 [3, 2]

五、torch.expand_dims

torch.expand_dims(input, dim): 这个函数接受一个张量 input 和一个整数 dim,表示要在 dim 位置插入一个新的维度。它会返回一个新的张量,其中插入了一个维度。例如:

python 复制代码
import torch

x = torch.randn(2, 3)  # 创建一个形状为 [2, 3] 的张量

x_expanded = torch.expand_dims(x, dim=1)  # 在第 1 个位置插入一个新的维度,形状变为 [2, 1, 3]
相关推荐
aitoolhub4 分钟前
精选AI设计工具测评:创新性、易用性及行业应用
人工智能·在线设计
safestar201238 分钟前
n8n 架构深度解构:从设计哲学到企业级实践
人工智能·ai编程
喵手40 分钟前
AI在自动化与机器人技术中的前沿应用
人工智能·机器人·自动化
一只乔哇噻1 小时前
java后端工程师+AI大模型进修ing(研一版‖day55)
人工智能
小毅&Nora1 小时前
【AI微服务】【Spring AI Alibaba】② Agent 深度实战:构建可记忆、可拦截、可流式的智能体系统
人工智能·微服务·spring-ai
陈天伟教授2 小时前
基于学习的人工智能(7)机器学习基本框架
人工智能·学习
千里念行客2402 小时前
昂瑞微正式启动科创板IPO发行
人工智能·科技·信息与通信·射频工程
撸码猿3 小时前
《Python AI入门》第10章 拥抱AIGC——OpenAI API调用与Prompt工程实战
人工智能·python·aigc
双翌视觉3 小时前
双翌全自动影像测量仪:以微米精度打造智能化制造
人工智能·机器学习·制造
编程小白_正在努力中4 小时前
神经网络深度解析:从神经元到深度学习的进化之路
人工智能·深度学习·神经网络·机器学习