十分钟掌握分布式数据库开发:OpenMLDB 开发者镜像详解

OpenMLDB 是一款国产的、开源的、面向时序数据的分布式内存数据库系统,它专注于高性能、高可靠性和易扩展性,适用于海量时序数据的处理以及在线特征的实时计算。在大数据和机器学习的浪潮中,OpenMLDB 以其强大的数据处理能力和高效的机器学习支持,在开源数据库领域崭露头角。

OpenMLDB 的核心存储和 SQL 引擎就包含超过36万行 C++ 代码及海量的 C 头文件代码,为了进一步降低项目编译门槛,提升开发者的工作效率,我们特别推出了一个全新设计的 OpenMLDB Docker 镜像,让开发者在任何操作系统平台(包括Linux、MacOS、Windows等)都可以通过离线的方式快速从头编译此数据库源码,只需十分钟就可以参与成为分布式数据库的开发者。

使用方法

目前镜像已经托管到阿里云镜像仓库,国内开发者也可以快速下载使用。 使用镜像流程如下:

  1. 启动容器:通过 Docker 命令启动容器,这将会进入一个包含 OpenMLDB 源码和所有依赖的环境。
arduino 复制代码
docker run -it registry.cn-beijing.aliyuncs.com/openmldb/openmldb-build bash
  1. 编译 OpenMLDB:在容器内部,可以直接进入到 OpenMLDB 的源码目录,运行编译脚本。
bash 复制代码
cd OpenMLDB
make
  1. 安装 OpenMLDB, 默认安装到${PROJECT_ROOT}/openmldb
go 复制代码
make install
  1. 部署与测试:编译完成后,可以根据需要进行部署和测试,所有必要的工具和依赖都已经准备就绪。

编译速度

OpenMLDB 默认关闭了并发编译,如果编译机器的资源足够,可以通过编译参数 NPROC 来启用并发编译功能。 多线程编译示例如下:

1. 四核编译

ini 复制代码
make NPROC=4

2. 八核编译

ini 复制代码
make NPROC=8

3. 十六核编译

ini 复制代码
make NPROC=16

镜像亮点

  1. 快速上手:省略了复杂的环境搭建步骤,使开发者在不同操作系统平台上都能直接进入开发状态。
  2. 环境统一:无论是个人开发还是团队协作,Docker 镜像确保每位成员都在一致的环境中进行开发,有效避免了"在我机器上能运行"的问题。
  3. 便于分享:镜像可以轻松共享给团队其他成员或在社区中分发,加速 OpenMLDB 的普及和应用。
  4. 完整的 OpenMLDB 环境:该镜像预装了 OpenMLDB 的完整源码,使开发者可以轻松地探索和修改OpenMLDB源码以及贡献代码至 OpenMLDB 社区。
  5. 离线编译与部署能力:通过预下载 OpenMLDB 所需的第三方库,使得该镜像能够在完全离线的环境中对OpenMLDB 进行编译和部署,极大地提高了在网络受限环境下的工作效率,提高了开发的灵活性和可行性。
  6. 编译效率:由于所有的依赖都已经被内置在镜像中,这避免了长时间的依赖下载和安装过程,使得编译过程变得更加迅速。

这款专为 OpenMLDB 离线构建定制的 Docker 镜像,不仅简化了开发者的入门流程,还为项目的编译、部署和测试提供了强大支持。期待这一工具能够帮助更多开发者和企业更高效地利用 OpenMLDB,在源码级别掌控 OpenMLDB 的编译和开发能力,并推动 OpenMLDB 在金融风控、推荐系统、量化交易等行业生态中的有进一步发展和应用。

相关阅读

相关推荐
互联网江湖7 分钟前
自动驾驶,走出青春期
人工智能
国科安芯8 分钟前
ASP3605A电源芯片在高速ADC子卡中的适配性研究
网络·人工智能·单片机·嵌入式硬件·安全
曾经的三心草10 分钟前
深度学习9-循环神经网络
人工智能·rnn·深度学习
TDengine (老段)15 分钟前
TDengine 数学函数 LOG 用户手册
java·大数据·数据库·时序数据库·iot·tdengine·涛思数据
TDengine (老段)22 分钟前
TDengine 数据函数 MOD 用户手册
大数据·数据库·物联网·时序数据库·tdengine·涛思数据
文档搬运工23 分钟前
Oracle 19.29
数据库·oracle
小小管写大大码35 分钟前
AI重排序API:优化搜索相关性
数据库·人工智能
OG one.Z37 分钟前
07_朴素贝叶斯
人工智能·机器学习
智能相对论1 小时前
把AI装进OS、批量落地智慧服务,智能手机革命2.0来了
人工智能·智能手机
flying_13141 小时前
图神经网络分享系列-GAT(GRAPH ATTENTION NETWORKS) (一)
人工智能·神经网络·图神经网络·注意力机制·gnn·gat·图注意力网络