MongoDB的count() 统计文档数量非常慢

在MongoDB中,count()函数用于统计文档的数量。但是count()函数通常不会使用索引来计算文档数量,而是扫描集合中的文档来计数。当数据量较大的时候,就不适合使用了。

解决方案:

1、使用聚合框架(aggregation framework)。虽然count()方法方便快捷,但在某些复杂场景中,使用聚合框架可能会更灵活和强大。

2、使用索引,直接find()查询文档,只要命中索引,查询速度比count()效率高很多。如果还需要分页之类的操作,可以在程序中对查询出来的文档集合直接分页。

我的数据库大约有2000万数据,我是用的是索引的方式:

count统计没有命中索引,需要7秒钟

只有find根据条件查询,命中索引,只需要0.2秒

相关推荐
人才程序员23 分钟前
【C++拓展】vs2022使用SQlite3
c语言·开发语言·数据库·c++·qt·ui·sqlite
极客先躯33 分钟前
高级java每日一道面试题-2025年01月23日-数据库篇-主键与索引有什么区别 ?
java·数据库·java高级·高级面试题·选择合适的主键·谨慎创建索引·定期评估索引的有效性
指尖下的技术40 分钟前
Mysql面试题----MyISAM和InnoDB的区别
数据库·mysql
永远是我的最爱1 小时前
数据库SQLite和SCADA DIAView应用教程
数据库·sqlite
指尖下的技术2 小时前
Mysql面试题----为什么B+树比B树更适合实现数据库索引
数据结构·数据库·b树·mysql
数据馅2 小时前
python自动生成pg数据库表对应的es索引
数据库·python·elasticsearch
峰子20122 小时前
B站评论系统的多级存储架构
开发语言·数据库·分布式·后端·golang·tidb
浏览器爱好者3 小时前
如何使用MongoDB进行数据存储?
数据库·mongodb
yuanpan3 小时前
MongoDB中的横向扩容数据分片
数据库·mongodb
草明3 小时前
Mongodb 慢查询日志分析 - 1
数据库·python·mongodb