理论学习 消融实验

消融实验的目的在于移除系统中的特定的部分,来控制变量式的研究这个部分对于系统整体的影响。如果去除这一部分后系统的性能没有太大损失,那么说明这一部分对于整个系统而言并不具有太大的重要性;如果去除之后系统性能明显的下降,则说明这一部分的设计是必不可少的。当然,如果出现了第三种情况,也就是去除之后模型的性能不降反升,那么建议找一下bug或者修改设计。

做消融实验会帮助理解构成系统的哪些部分是真正有用的,而哪些模块是可有可无的。因此消融实验可以帮助设计出更简单且工作的模型。因此,如果可以用两种模型获得相同的性能,则优先选择更简单的模型。

相关推荐
OpenCSG23 分钟前
对比分析:CSGHub vs. Hugging Face:模型管理平台选型对
人工智能·架构·开源
云上凯歌24 分钟前
传统老旧系统的“AI 涅槃”:从零构建企业级 Agent 集群实战指南
人工智能
cskywit33 分钟前
破解红外“魅影”难题:WMRNet 如何以频率分析与二阶差分重塑小目标检测?
人工智能·深度学习
无名修道院42 分钟前
AI大模型应用开发-RAG 基础:向量数据库(FAISS/Milvus)、文本拆分、相似性搜索(“让模型查资料再回答”)
人工智能·向量数据库·rag·ai大模型应用开发
自可乐43 分钟前
Milvus向量数据库/RAG基础设施学习教程
数据库·人工智能·python·milvus
Loo国昌1 小时前
【大模型应用开发】第二阶段:语义理解应用:文本分类与聚类 (Text Classification & Clustering)
人工智能·分类·聚类
XX風1 小时前
3.2K-means
人工智能·算法·kmeans
feasibility.1 小时前
在OpenCode使用skills搭建基于LLM的dify工作流
人工智能·低代码·docker·ollama·skills·opencode·智能体/工作流
进击monkey1 小时前
PandaWiki:开源企业级AI知识库工具,基于RAG架构的私有化部署方案
人工智能·开源
zy_destiny2 小时前
【工业场景】用YOLOv26实现桥梁检测
人工智能·深度学习·yolo·机器学习·计算机视觉·目标跟踪