一、介绍
1.十进制: 都是以0-9这九个数字组成,不能以0开头。
2.二进制: 由0和1两个数字组成。
3.八进制: 由0-7数字组成,为了区分与其他进制的数字区别,开头都是以0开始。
4.十六进制:由0-9和A-F或a-f组成。为了区分于其他数字的区别,开头都是以0x开始。
|------|-----|-----|------|
| 二进制 | 八进制 | 十进制 | 十六进制 |
| 0000 | 0 | 0 | 0 |
| 0001 | 1 | 1 | 1 |
| 0010 | 2 | 2 | 2 |
| 0011 | 3 | 3 | 3 |
| 0100 | 4 | 4 | 4 |
| 0101 | 5 | 5 | 5 |
| 0110 | 6 | 6 | 6 |
| 0111 | 7 | 7 | 7 |
| 1000 | 10 | 8 | 8 |
| 1001 | 11 | 9 | 9 |
| 1010 | 12 | 10 | A |
| 1011 | 13 | 11 | B |
| 1100 | 14 | 12 | C |
| 1101 | 15 | 13 | D |
| 1110 | 16 | 14 | E |
| 1111 | 17 | 15 | F |
二、Windows自带计算器
输入:比如十进制的10,则点击 DEC ,在输入10 ;计算OX12,则点击 HEX 输入12即可。
三、十进制转八进制
转换原理:除以8,反向取余数,直到商为0终止。
例:500 --> 0764
四、十进制转十六进制
转换原理:除以16,反向取余数,直到商为0终止。
例:500 --> 1F4 或 1f4
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A或a | B或b | C或c | D或d | E或e | F或f |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
[余数对应数字] |
五、八进制转十进制
转换原理:八进制数的每一位乘以对应的权值(8的幂),然后将结果相加,得到十进制数。
例: 0764 --> 500
0*8^3+7*8^2+6*8^1+4*8^0
六、十六进制转十进制
转换原理:十六进制数的每一位乘以对应的权值(16的幂),然后将结果相加,得到十进制数。
|---|---|---|---|---|---|---|---|---|-----|-----|-----|-----|-----|-----|
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A或a | B或b | C或c | D或d | E或e | F或f |
| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
[余数对应数字]
例:1F4 或 1f4 --> 500
七、十进制转二进制
转换原理:除以2,反向取余数,直到商为0终止。
例:500 --> 0001 1111 0100
注:4位一组,不足4位补0
八、二进制转十进制
转换原理:十六进制数的每一位乘以对应的权值(2的幂),然后将结果相加,得到十进制数。
**例:**0001 1111 0100 --> 500
九、二进制转八进制
转换原理:三合一法
|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 二进制 | 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
| 八进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
例:0001 1111 0100 --> 0764
注意:八进制转二进制,反向操作,一变三
十、二进制转十六进制
转换原理:四合一法
|------|------|------|------|------|------|------|------|------|
| 二进制 | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 |
| 十六进制 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 二进制 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
| 十六进制 | 8 | 9 | A | B | C | D | E | F |
例:0001 1111 0100 --> 1F4
注意:十六进制转二进制,反向操作,一变四