GNN/GCN自己学习

一、图的基本组成

V:点(特征)

E:边

U:图(全局特征)

二、用途

整合特征(embedding),做重构

三、邻接矩阵

以图像为例,每个像素点周围都有邻居,用邻接矩阵表示哪些点之间有关系,邻接矩阵A是对称的,也可以不对称

文本也可以做邻接矩阵:

实际是2xN, (source , target),要不然维护一个NxN太多了

四、使用场景

输入的格式不需要固定,是随意的,没有CV NLP的resize等固定大小之说。比如说人的社交网络,随时会变

点边图

五、每个点特征更新(聚合 更新)

更新时肯定要考虑他们的邻居

GCN图卷积

一、

优势:可以做半监督学习

二、基本思想

计算特征,之后传入神经网络

图中基本组成:

邻接矩阵

特征计算方法:

使用度矩阵来做个平均

你的度和我的度都要考虑进来

基本公式

相关推荐
先做个垃圾出来………8 分钟前
迁移学习(Transfer Learning)
人工智能·机器学习·迁移学习
diablobaal3 小时前
云计算学习100天-第21天
学习
wait a minutes4 小时前
【自动驾驶】8月 端到端自动驾驶算法论文(arxiv20250819)
人工智能·机器学习·自动驾驶
聚客AI4 小时前
深度拆解AI大模型从训练框架、推理优化到市场趋势与基础设施挑战
图像处理·人工智能·pytorch·深度学习·机器学习·自然语言处理·transformer
RaymondZhao3414 小时前
【全面推导】策略梯度算法:公式、偏差方差与进化
人工智能·深度学习·算法·机器学习·chatgpt
好望角雾眠14 小时前
第一阶段C#基础-10:集合(Arraylist,list,Dictionary等)
笔记·学习·c#
艾伦~耶格尔14 小时前
【集合框架LinkedList底层添加元素机制】
java·开发语言·学习·面试
zhangfeng113314 小时前
DBSCAN算法详解和参数优化,基于密度的空间聚类算法,特别擅长处理不规则形状的聚类和噪声数据
算法·机器学习·聚类
星仔编程15 小时前
python学习DAY46打卡
学习
大霞上仙15 小时前
实现自学习系统,输入excel文件,能学习后进行相应回答
python·学习·excel