GNN/GCN自己学习

一、图的基本组成

V:点(特征)

E:边

U:图(全局特征)

二、用途

整合特征(embedding),做重构

三、邻接矩阵

以图像为例,每个像素点周围都有邻居,用邻接矩阵表示哪些点之间有关系,邻接矩阵A是对称的,也可以不对称

文本也可以做邻接矩阵:

实际是2xN, (source , target),要不然维护一个NxN太多了

四、使用场景

输入的格式不需要固定,是随意的,没有CV NLP的resize等固定大小之说。比如说人的社交网络,随时会变

点边图

五、每个点特征更新(聚合 更新)

更新时肯定要考虑他们的邻居

GCN图卷积

一、

优势:可以做半监督学习

二、基本思想

计算特征,之后传入神经网络

图中基本组成:

邻接矩阵

特征计算方法:

使用度矩阵来做个平均

你的度和我的度都要考虑进来

基本公式

相关推荐
其美杰布-富贵-李几秒前
SpaceClaim 流体域建模学习笔记
笔记·学习
STLearner9 小时前
AI论文速读 | U-Cast:学习高维时间序列预测的层次结构
大数据·论文阅读·人工智能·深度学习·学习·机器学习·数据挖掘
黑客思维者10 小时前
LLM底层原理学习笔记:Adam优化器为何能征服巨型模型成为深度学习的“速度与稳定之王”
笔记·深度学习·学习·llm·adam优化器
kk哥889911 小时前
Swift底层原理学习笔记
笔记·学习·swift
roman_日积跬步-终至千里12 小时前
【模式识别与机器学习(16)】聚类分析【1】:基础概念与常见方法
人工智能·机器学习
AA陈超12 小时前
Lyra学习004:GameFeatureData分析
c++·笔记·学习·ue5·虚幻引擎
LDG_AGI13 小时前
【推荐系统】深度学习训练框架(十):PyTorch Dataset—PyTorch数据基石
人工智能·pytorch·分布式·python·深度学习·机器学习
zkl_zkl_13 小时前
地理信息系统学习笔记——第六章 空间数据采集与处理
笔记·学习·数据处理·数据质量·空间数据
光头程序员13 小时前
学习笔记——主攻 vite
笔记·学习