GNN/GCN自己学习

一、图的基本组成

V:点(特征)

E:边

U:图(全局特征)

二、用途

整合特征(embedding),做重构

三、邻接矩阵

以图像为例,每个像素点周围都有邻居,用邻接矩阵表示哪些点之间有关系,邻接矩阵A是对称的,也可以不对称

文本也可以做邻接矩阵:

实际是2xN, (source , target),要不然维护一个NxN太多了

四、使用场景

输入的格式不需要固定,是随意的,没有CV NLP的resize等固定大小之说。比如说人的社交网络,随时会变

点边图

五、每个点特征更新(聚合 更新)

更新时肯定要考虑他们的邻居

GCN图卷积

一、

优势:可以做半监督学习

二、基本思想

计算特征,之后传入神经网络

图中基本组成:

邻接矩阵

特征计算方法:

使用度矩阵来做个平均

你的度和我的度都要考虑进来

基本公式

相关推荐
free-elcmacom15 分钟前
深度学习<4>高效模型架构与优化器的“效率革命”
人工智能·python·深度学习·机器学习·架构
半夏知半秋22 分钟前
docker常用指令整理
运维·笔记·后端·学习·docker·容器
蒸蒸yyyyzwd1 小时前
网络编程——threadpool.h学习笔记
笔记·学习
浪子不回头4151 小时前
SGLang学习笔记
人工智能·笔记·学习
deng-c-f2 小时前
Linux C/C++ 学习日记(53):原子操作(二):实现shared_ptr
开发语言·c++·学习
Godspeed Zhao2 小时前
自动驾驶中的传感器技术77——Sensor Fusion(0)
人工智能·机器学习·自动驾驶
旖旎夜光2 小时前
Linux(3)(下)
linux·学习
geneculture3 小时前
从智力仿真到认知协同:人机之间的价值对齐与共生框架
大数据·人工智能·学习·融智学的重要应用·信智序位