GNN/GCN自己学习

一、图的基本组成

V:点(特征)

E:边

U:图(全局特征)

二、用途

整合特征(embedding),做重构

三、邻接矩阵

以图像为例,每个像素点周围都有邻居,用邻接矩阵表示哪些点之间有关系,邻接矩阵A是对称的,也可以不对称

文本也可以做邻接矩阵:

实际是2xN, (source , target),要不然维护一个NxN太多了

四、使用场景

输入的格式不需要固定,是随意的,没有CV NLP的resize等固定大小之说。比如说人的社交网络,随时会变

点边图

五、每个点特征更新(聚合 更新)

更新时肯定要考虑他们的邻居

GCN图卷积

一、

优势:可以做半监督学习

二、基本思想

计算特征,之后传入神经网络

图中基本组成:

邻接矩阵

特征计算方法:

使用度矩阵来做个平均

你的度和我的度都要考虑进来

基本公式

相关推荐
好奇龙猫5 小时前
日语学习-日语知识点小记-构建基础-JLPT-N3阶段-二阶段(19):阶段练习
学习
松涛和鸣6 小时前
11.C 语言学习:递归、宏定义、预处理、汉诺塔、Fibonacci 等
linux·c语言·开发语言·学习·算法·排序算法
2301_7833601310 小时前
R语言机器学习系列|随机森林模型特征重要性排序的R语言实现
随机森林·机器学习·r语言
Q***f63510 小时前
后端消息队列学习资源,RabbitMQ+Kafka
学习·kafka·rabbitmq
源码之家10 小时前
机器学习:基于python租房推荐系统 预测算法 协同过滤推荐算法 房源信息 可视化 机器学习-线性回归预测模型 Flask框架(源码+文档)✅
大数据·python·算法·机器学习·数据分析·线性回归·推荐算法
循环过三天10 小时前
7.7、Python-常用内置函数
笔记·python·学习
烤麻辣烫11 小时前
23种设计模式(新手)-5里氏替换原则
java·学习·设计模式·intellij-idea·里氏替换原则
AA陈超12 小时前
ASC学习笔记0007:用于与GameplayAbilities系统交互的核心ActorComponent
c++·笔记·学习·ue5·虚幻引擎
老蒋新思维14 小时前
紧跟郑滢轩,以 “学习力 +” 驱动 AI 与 IP 商业变革
网络·人工智能·学习·tcp/ip·企业管理·创始人ip·创客匠人