GNN/GCN自己学习

一、图的基本组成

V:点(特征)

E:边

U:图(全局特征)

二、用途

整合特征(embedding),做重构

三、邻接矩阵

以图像为例,每个像素点周围都有邻居,用邻接矩阵表示哪些点之间有关系,邻接矩阵A是对称的,也可以不对称

文本也可以做邻接矩阵:

实际是2xN, (source , target),要不然维护一个NxN太多了

四、使用场景

输入的格式不需要固定,是随意的,没有CV NLP的resize等固定大小之说。比如说人的社交网络,随时会变

点边图

五、每个点特征更新(聚合 更新)

更新时肯定要考虑他们的邻居

GCN图卷积

一、

优势:可以做半监督学习

二、基本思想

计算特征,之后传入神经网络

图中基本组成:

邻接矩阵

特征计算方法:

使用度矩阵来做个平均

你的度和我的度都要考虑进来

基本公式

相关推荐
四维碎片17 分钟前
【Qt】UDP跨平台调试工具
qt·学习·udp
好奇龙猫37 分钟前
【人工智能学习-AI入试相关题目练习-第十八次】
人工智能·学习
程序员辣条44 分钟前
AI产品经理:2024年职场发展的新机遇
人工智能·学习·职场和发展·产品经理·大模型学习·大模型入门·大模型教程
AI大模型测试1 小时前
大龄程序员想转行到AI大模型,好转吗?
人工智能·深度学习·机器学习·ai·语言模型·职场和发展·大模型
wanping158259923411 小时前
AI Agent(学习六-FAISS 持久化到磁盘(重启不丢记忆))
人工智能·学习·faiss
知识分享小能手1 小时前
SQL Server 2019入门学习教程,从入门到精通,SQL Server 2019数据库的操作(2)
数据库·学习·sqlserver
鄭郑2 小时前
STM32学习笔记--I2C封装与OLED(2026.2.1)
笔记·stm32·学习
金融小师妹3 小时前
基于LSTM-GARCH-EVT混合模型的贵金属极端波动解析:黄金白银双双反弹的逻辑验证
大数据·人工智能·深度学习·机器学习
酒鼎3 小时前
学习笔记(4)HTML5新特性(第3章)- WebSocket
笔记·学习·html5
-Springer-4 小时前
STM32 学习 —— 个人学习笔记2-2(新建工程)
笔记·stm32·学习